697 research outputs found
Bloch Oscillation under a Bichromatic Laser: Quasi-Miniband Formation, Collapse, and Dynamical Delocalization and Localization
A novel DC and AC driving configuration is proposed for semiconductor
superlattices, in which the THz AC driving is provided by an intense
bichromatic cw laser. The two components of the laser, usually in the visible
light range, are near but not exactly resonant with interband Wannier-Stark
transitions, and their frequency difference equals the Wannier-Stark ladder
spacing. Multi-photon processes with the intermediate states in the conduction
(valence) band cause dynamical delocalization and localization of valence
(conduction) electrons, and the corresponding formation and collapse of the
quasi-minibands.Comment: 4 pages, 3 figure
Measuring the cosmological 21-cm dipole with 21-cm global experiments
A measurement of the 21-cm global signal would be a revealing probe of the
Dark Ages, the era of first star formation, and the Epoch of Reionization. It
has remained elusive owing to bright galactic and extra-galactic foreground
contaminants, coupled with instrumental noise, ionospheric effects, and beam
chromaticity. The simultaneous detection of a consistent 21-cm dipole signal
alongside the 21-cm global signal would provide confidence in a claimed
detection. We use simulated data to investigate the possibility of using
drift-scan dipole antenna experiments to achieve a detection of both monopole
and dipole. We find that at least two antennae located at different latitudes
are required to localise the dipole. In the absence of foregrounds, a total
integration time of hours is required to detect the dipole. With
contamination by simple foregrounds, we find that the integration time required
increases to hours. We show that the extraction of the 21-cm dipole
from more realistic foregrounds requires a more sophisticated foreground
modelling approach. Finally, we motivate a global network of dipole antennae
that could reasonably detect the dipole in hours of integration
time.Comment: 12 pages, 15 figure
Recommended from our members
Optimal retention levels, given the joint survival of cedent and reinsurer
Fractional and unquantized dc voltage generation in THz-driven semiconductor superlattices
We consider the spontaneous creation of a dc voltage across a strongly
coupled semiconductor superlattice subjected to THz radiation. We show that the
dc voltage may be approximately proportional either to an integer or to a half-
integer multiple of the frequency of the applied ac field, depending on the
ratio of the characteristic scattering rates of conducting electrons. For the
case of an ac field frequency less than the characteristic scattering rates, we
demonstrate the generation of an unquantized dc voltage.Comment: 6 pages, 3 figures, RevTEX, EPSF. Revised version v3: corrected typo
X-ray absorption study of Ti-activated sodium aluminum hydride
Ti K-edge x-ray absorption near edge spectroscopy (XANES) was used to explore
the Ti valence and coordination in Ti-activated sodium alanate. An empirical
relationship was established between the Ti valence and the Ti K-edge onset
based on a set of standards. This relationship was used to estimate oxidation
states of the titanium catalyst in 2 mol% and 4 mol% Ti-doped NaAlH4. These
results demonstrate that the formal titanium valence is zero in doped sodium
alanate and nearly invariant during hydrogen cycling. A qualitative comparison
of the edge fine structure suggests that the Ti is present on the surface in
the form of amorphous TiAl3.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let
Nonequilibrium free energy, H theorem and self-sustained oscillations for Boltzmann-BGK descriptions of semiconductor superlattices
Semiconductor superlattices (SL) may be described by a Boltzmann-Poisson
kinetic equation with a Bhatnagar-Gross-Krook (BGK) collision term which
preserves charge, but not momentum or energy. Under appropriate boundary and
voltage bias conditions, these equations exhibit time-periodic oscillations of
the current caused by repeated nucleation and motion of charge dipole waves.
Despite this clear nonequilibrium behavior, if we `close' the system by
attaching insulated contacts to the superlattice and keeping its voltage bias
to zero volts, we can prove the H theorem, namely that a free energy
of the kinetic equations is a Lyapunov functional (, ). Numerical simulations confirm that the free energy decays to its
equilibrium value for a closed SL, whereas for an `open' SL under appropriate
dc voltage bias and contact conductivity oscillates in time with the
same frequency as the current self-sustained oscillations.Comment: 15 pages, 3 figures, minor revision of latex fil
Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field
We study a resistively shunted semiconductor superlattice subject to a
high-frequency electric field. Using a balance equation approach that
incorporates the influence of the electric circuit, we determine numerically a
range of amplitude and frequency of the ac field for which a dc bias and
current are generated spontaneously and show that this region is likely
accessible to current experiments. Our simulations reveal that the Bloch
frequency corresponding to the spontaneous dc bias is approximately an integer
multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure
- …