126 research outputs found

    Benchmarking TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    Get PDF
    Scintillation light from liquid argon is produced at 128 nm and thus must be shifted to visible wavelengths in light detection systems used for Liquid Argon Time Projection Chambers (LArTPCs). To date, designs have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we show that the response of lightguides coated with TPB in a UV Transmitting (UVT) acrylic matrix is very similar to that of a coating using a polystyrene (PS) matrix. We obtain a factor of three higher light yield than has been previously reported from lightguides. This paper provides information on the response of the lightguides so that these can be modeled in simulations for future LArTPCs. This paper also identifies areas of R&D for potential improvements in the lightguide respons

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    Expression of Interest for a Novel Search for CP Violation in the Neutrino Sector: DAEdALUS

    Get PDF
    Submitted to the DUSEL DirectorateSubmitted to the DUSEL DirectorateDAEdALUS, a Decay-At-rest Experiment for delta_CP studies At the Laboratory for Underground Science, provides a new approach to the search for CP violation in the neutrino sector. The design utilizes low-cost, high-power proton accelerators under development for commercial uses. These provide neutrino beams with energy up to 52 MeV from pion and muon decay-at-rest. The experiment searches for aninu_mu to antinu_e at short baselines corresponding to the atmospheric Delta m^2 region. The antinu_e will be detected, via inverse beta decay, in the 300 kton fiducial-volume Gd-doped water Cherenkov neutrino detector proposed for the Deep Underground Science and Engineering Laboratory (DUSEL). DAEdALUS opens new opportunities for DUSEL. It provides a high-statistics, low-background alternative for CP violation searches which matches the capability of the conventional long-baseline neutrino experiment, LBNE. Because of the complementary designs, when DAEdALUS antineutrino data are combined with LBNE neutrino data, the sensitivity of the CP-violation search improves beyond any present proposals, including the proposal for Project X. Also, the availability of an on-site neutrino beam opens opportunities for additional physics, both for the presently planned DUSEL detectors and for new experiments at a future 300 ft campus

    Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data

    Get PDF
    We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×104 kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c-2, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c-2 WIMP mass

    Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment

    Get PDF
    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4×10-41 cm2 (σp=2.9×10-39 cm2) at 33 GeV/c2. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date

    Chromatographic separation of radioactive noble gases from xenon

    Get PDF
    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85 Kr and 39 Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt

    Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility

    Get PDF
    Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0–3300 keV) varied from 596 Hz to 1355 Hz for unshielded measurements, corresponding to a total flux from the cavern walls of 1.9 ± 0.4 γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220 ± 60 Bq/kg of 40K, 29 ± 15 Bq/kg of 238U, and 13 ± 3 Bq/kg of 232Th

    Ultra-Low Energy Calibration of LUX Detector using 127^{127}Xe Electron Capture

    Get PDF
    We report an absolute calibration of the ionization yields(\textit{Q_y}) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy 127^{127}Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with 127^{127}I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ\textit{in situ} measurements that have been explored in liquid xenon
    • …
    corecore