104 research outputs found

    Isolation and Sequence Comparison of a Maize Calmodulin cDNA

    Full text link

    Static properties of the dissipative random quantum Ising ferromagnetic chain

    Full text link
    We study the zero temperature static properties of dissipative ensembles of quantum Ising spins arranged on periodic one dimensional finite clusters and on an infinite chain. The spins interact ferro-magnetically with nearest-neighbour pure and random couplings. They are subject to a transverse field and coupled to an Ohmic bath of quantum harmonic oscillators. We analyze the coupled system using Monte Carlo simulations of the classical two-dimensional counterpart model. The coupling to the bath enhances the extent of the ordered phase, as found in mean-field spin-glasses. In the case of finite clusters we show that a generalization of the Caldeira-Leggett localization transition exists. In the case of the infinite random chain we study the effect of dissipation on the transition and the Griffiths phase.Comment: 21 pages, 10 figure

    Finite-size scaling properties of random transverse-field Ising chains : Comparison between canonical and microcanonical ensembles for the disorder

    Full text link
    The Random Transverse Field Ising Chain is the simplest disordered model presenting a quantum phase transition at T=0. We compare analytically its finite-size scaling properties in two different ensembles for the disorder (i) the canonical ensemble, where the disorder variables are independent (ii) the microcanonical ensemble, where there exists a global constraint on the disorder variables. The observables under study are the surface magnetization, the correlation of the two surface magnetizations, the gap and the end-to-end spin-spin correlation C(L)C(L) for a chain of length LL. At criticality, each observable decays typically as ewLe^{- w \sqrt{L}} in both ensembles, but the probability distributions of the rescaled variable ww are different in the two ensembles, in particular in their asymptotic behaviors. As a consequence, the dependence in LL of averaged observables differ in the two ensembles. For instance, the correlation C(L)C(L) decays algebraically as 1/L in the canonical ensemble, but sub-exponentially as ecL1/3e^{-c L^{1/3}} in the microcanonical ensemble. Off criticality, probability distributions of rescaled variables are governed by the critical exponent ν=2\nu=2 in both ensembles, but the following observables are governed by the exponent ν~=1\tilde \nu=1 in the microcanonical ensemble, instead of the exponent ν=2\nu=2 in the canonical ensemble (a) in the disordered phase : the averaged surface magnetization, the averaged correlation of the two surface magnetizations and the averaged end-to-end spin-spin correlation (b) in the ordered phase : the averaged gap. In conclusion, the measure of the rare events that dominate various averaged observables can be very sensitive to the microcanonical constraint.Comment: 24 page

    A Crash Course on Aging

    Full text link
    In these lecture notes I describe some of the main theoretical ideas emerged to explain the aging dynamics. This is meant to be a very short introduction to aging dynamics and no previous knowledge is assumed. I will go through simple examples that allow one to grasp the main results and predictions.Comment: Lecture Notes (22 pages) given at "Unifying Concepts in Glass Physics III", Bangalore (2004); to be published in JSTA

    Universal and nonuniversal contributions to block-block entanglement in many-fermion systems

    Full text link
    We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x>1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term steming from the thermodynamic limit.Comment: 6 pages, 3 figure

    Retarding Sub- and Accelerating Super-Diffusion Governed by Distributed Order Fractional Diffusion Equations

    Full text link
    We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equations and establish the relation to the Continuous Time Random Walk theory. We show that the distributed order time fractional diffusion equation describes the sub-diffusion random process which is subordinated to the Wiener process and whose diffusion exponent diminishes in time (retarding sub-diffusion) leading to superslow diffusion, for which the square displacement grows logarithmically in time. We also demonstrate that the distributed order space fractional diffusion equation describes super-diffusion phenomena when the diffusion exponent grows in time (accelerating super-diffusion).Comment: 11 pages, LaTe

    Universal corrections to scaling for block entanglement in spin-1/2 XX chains

    Full text link
    We consider the R\'enyi entropies Sn()S_n(\ell) in the one dimensional spin-1/2 Heisenberg XX chain in a magnetic field. The case n=1 corresponds to the von Neumann ``entanglement'' entropy. Using a combination of methods based on the generalized Fisher-Hartwig conjecture and a recurrence relation connected to the Painlev\'e VI differential equation we obtain the asymptotic behaviour, accurate to order O(3){\cal O}(\ell^{-3}), of the R\'enyi entropies Sn()S_n(\ell) for large block lengths \ell. For n=1,2,3,10 this constitutes the 3,6,10,48 leading terms respectively. The o(1) contributions are found to exhibit a rich structure of oscillatory behaviour, which we analyze in some detail both for finite nn and in the limit nn\to\infty.Comment: 25 pages, 5 figure

    Real-time non-equilibrium dynamics of quantum glassy systems

    Full text link
    We develop a systematic analytic approach to aging effects in quantum disordered systems in contact with an environment. Within the closed-time path-integral formalism we include dissipation by coupling the system to a set of independent harmonic oscillators that mimic a quantum thermal bath. After integrating over the bath variables and averaging over disorder we obtain an effective action that determines the real-time dynamics of the system. The classical limit yields the Martin-Siggia-Rose generating functional associated to a colored noise. We apply this general formalism to a prototype model related to the pp spin-glass. We show that the model has a dynamic phase transition separating the paramagnetic from the spin-glass phase and that quantum fluctuations depress the transition temperature until a quantum critical point is reached. We show that the dynamics in the paramagnetic phase is stationary but presents an interesting crossover from a region controlled by the classical critical point to another one controlled by the quantum critical point. The most characteristic property of the dynamics in a glassy phase, namely aging, survives the quantum fluctuations. In the sub-critical region the quantum fluctuation-dissipation theorem is modified in a way that is consistent with the notion of effective temperatures introduced for the classical case. We discuss these results in connection with recent experiments in dipolar quantum spin-glasses and the relevance of the effective temperatures with respect to the understanding of the low temperature dynamics.Comment: 56 pages, Revtex, 17 figures include

    Universal parity effects in the entanglement entropy of XX chains with open boundary conditions

    Full text link
    We consider the Renyi entanglement entropies in the one-dimensional XX spin-chains with open boundary conditions in the presence of a magnetic field. In the case of a semi-infinite system and a block starting from the boundary, we derive rigorously the asymptotic behavior for large block sizes on the basis of a recent mathematical theorem for the determinant of Toeplitz plus Hankel matrices. We conjecture a generalized Fisher-Hartwig form for the corrections to the asymptotic behavior of this determinant that allows the exact characterization of the corrections to the scaling at order o(1/l) for any n. By combining these results with conformal field theory arguments, we derive exact expressions also in finite chains with open boundary conditions and in the case when the block is detached from the boundary.Comment: 24 pages, 9 figure

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure
    corecore