79 research outputs found

    X chromosomal abnormalities in basal-like human breast cancer

    Get PDF
    SummarySporadic basal-like cancers (BLC) are a distinct class of human breast cancers that are phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient tumors, most BLC lack markers of a normal inactive X chromosome (Xi). Duplication of the active X chromosome and loss of Xi characterized almost half of BLC cases tested. Others contained biparental but nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These abnormalities did not lead to a global increase in X chromosome transcription but were associated with overexpression of a small subset of X chromosomal genes. Other, equally aneuploid, but non-BLC rarely displayed these X chromosome abnormalities. These results suggest that X chromosome abnormalities contribute to the pathogenesis of BLC, both inherited and sporadic

    Monitoring Repair of UV-Induced 6-4-Photoproducts with a Purified DDB2 Protein Complex

    Get PDF
    Because cells are constantly subjected to DNA damaging insults, DNA repair pathways are critical for genome integrity [1]. DNA damage recognition protein complexes (DRCs) recognize DNA damage and initiate DNA repair. The DNA-Damage Binding protein 2 (DDB2) complex is a DRC that initiates nucleotide excision repair (NER) of DNA damage caused by ultraviolet light (UV) [2]-[4]. Using a purified DDB2 DRC, we created a probe ("DDB2 proteo-probe") that hybridizes to nuclei of cells irradiated with UV and not to cells exposed to other genotoxins. The DDB2 proteo-probe recognized UV-irradiated DNA in classical laboratory assays, including cyto- and histo-chemistry, flow cytometry, and slot-blotting. When immobilized, the proteo-probe also bound soluble UV-irradiated DNA in ELISA-like and DNA pull-down assays. In vitro, the DDB2 proteo-probe preferentially bound 6-4-photoproducts [(6-4)PPs] rather than cyclobutane pyrimidine dimers (CPDs). We followed UV-damage repair by cyto-chemistry in cells fixed at different time after UV irradiation, using either the DDB2 proteo-probe or antibodies against CPDs, or (6-4)PPs. The signals obtained with the DDB2 proteo-probe and with the antibody against (6-4)PPs decreased in a nearly identical manner. Since (6-4)PPs are repaired only by nucleotide excision repair (NER), our results strongly suggest the DDB2 proteo-probe hybridizes to DNA containing (6-4)PPs and allows monitoring of their removal during NER. We discuss the general use of purified DRCs as probes, in lieu of antibodies, to recognize and monitor DNA damage and repair

    Low-level expression of HER2 and CK19 in normal peripheral blood mononuclear cells: relevance for detection of circulating tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detection of circulating tumor cells (CTC) in the blood of cancer patients may have prognostic and predictive significance. However, background expression of 'tumor specific markers' in peripheral blood mononuclear cells (PBMC) may confound these studies. The goal of this study was to identify the origin of Cytokeratin 19 (CK19) and HER-2 signal in PBMC and suggest an approach to enhance techniques involved in detection of CTC in breast cancer patients.</p> <p>Methods</p> <p>PBMC from healthy donors were isolated and fractionated into monocytes, lymphocytes, natural killer cells/granulocytes and epithelial populations using immunomagnetic selection and fluorescent cell-sorting for each cell type. RNA isolated from each fraction was analyzed for CK19, HER2 and Beta 2 microglobulin (B2M) using real-time qRT-PCR. Positive selection for epithelial cells and negative selection for NK/granulocytes were used in an attempt to reduce background expression of CK19 and HER2 markers.</p> <p>Results</p> <p>In normal PBMC, CK19 was expressed in the lymphocyte population while HER-2 expression was highest in the NK/granulocyte population. Immunomagnetic selection for epithelial cells reduced background CK19 signal to a frequency of <5% in normal donors. Using negative selection, the majority (74–98%) of HER2 signal could be removed from PBMC. Positive selection methods are variably effective at reducing these background signals.</p> <p>Conclusion</p> <p>We present a novel method to improve the specificity of the traditional method of detecting CTC by identifying the source of the background signals and reducing them by negative immunoselection. Further studies are warranted to improve sensitivity and specificity of methods of detecting CTC will prove to be useful tools for clinicians in determining prognosis and monitoring treatment responses of breast cancer patients.</p

    Risk prediction models with incomplete data with application to prediction of estrogen receptor-positive breast cancer: prospective data from the Nurses' Health Study

    Get PDF
    Introduction A number of breast cancer risk prediction models have been developed to provide insight into a woman\u27s individual breast cancer risk. Although circulating levels of estradiol in postmenopausal women predict subsequent breast cancer risk, whether the addition of estradiol levels adds significantly to a model\u27s predictive power has not previously been evaluated. Methods Using linear regression, the authors developed an imputed estradiol score using measured estradiol levels (the outcome) and both case status and risk factor data (for example, body mass index) from a nested case-control study conducted within a large prospective cohort study and used multiple imputation methods to develop an overall risk model including both risk factor data from the main cohort and estradiol levels from the nested case-control study. Results The authors evaluated the addition of imputed estradiol level to the previously published Rosner and Colditz log-incidence model for breast cancer risk prediction within the larger Nurses\u27 Health Study cohort. The follow-up was from 1980 to 2000; during this time, 1,559 invasive estrogen receptor-positive breast cancer cases were confirmed. The addition of imputed estradiol levels significantly improved risk prediction; the age-specific concordance statistic increased from 0.635 ± 0.007 to 0.645 ± 0.007 (P \u3c 0.001) after the addition of imputed estradiol. Conclusion Circulating estradiol levels in postmenopausal women appear to add to other lifestyle factors in predicting a woman\u27s individual risk of breast cancer

    Job stress and job satisfaction of physicians, radiographers, nurses and physicists working in radiotherapy: a multicenter analysis by the DEGRO Quality of Life Work Group

    Get PDF
    Background Ongoing changes in cancer care cause an increase in the complexity of cases which is characterized by modern treatment techniques and a higher demand for patient information about the underlying disease and therapeutic options. At the same time, the restructuring of health services and reduced funding have led to the downsizing of hospital care services. These trends strongly influence the workplace environment and are a potential source of stress and burnout among professionals working in radiotherapy. Methods and patients A postal survey was sent to members of the workgroup "Quality of Life" which is part of DEGRO (German Society for Radiooncology). Thus far, 11 departments have answered the survey. 406 (76.1%) out of 534 cancer care workers (23% physicians, 35% radiographers, 31% nurses, 11% physicists) from 8 university hospitals and 3 general hospitals completed the FBAS form (Stress Questionnaire of Physicians and Nurses; 42 items, 7 scales), and a self-designed questionnaire regarding work situation and one question on global job satisfaction. Furthermore, the participants could make voluntary suggestions about how to improve their situation. Results Nurses and physicians showed the highest level of job stress (total score 2.2 and 2.1). The greatest source of job stress (physicians, nurses and radiographers) stemmed from structural conditions (e.g. underpayment, ringing of the telephone) a "stress by compassion" (e.g. "long suffering of patients", "patients will be kept alive using all available resources against the conviction of staff"). In multivariate analyses professional group (p < 0.001), working night shifts (p = 0.001), age group (p = 0.012) and free time compensation (p = 0.024) gained significance for total FBAS score. Global job satisfaction was 4.1 on a 9-point scale (from 1 – very satisfied to 9 – not satisfied). Comparing the total stress scores of the hospitals and job groups we found significant differences in nurses (p = 0.005) and physicists (p = 0.042) and a borderline significance in physicians (p = 0.052). In multivariate analyses "professional group" (p = 0.006) and "vocational experience" (p = 0.036) were associated with job satisfaction (cancer care workers with < 2 years of vocational experience having a higher global job satisfaction). The total FBAS score correlated with job satisfaction (Spearman-Rho = 0.40; p < 0.001). Conclusion Current workplace environments have a negative impact on stress levels and the satisfaction of radiotherapy staff. Identification and removal of the above-mentioned critical points requires various changes which should lead to the reduction of stress

    Therapeutic Implications of GIPC1 Silencing in Cancer

    Get PDF
    GIPC1 is a cytoplasmic scaffold protein that interacts with numerous receptor signaling complexes, and emerging evidence suggests that it plays a role in tumorigenesis. GIPC1 is highly expressed in a number of human malignancies, including breast, ovarian, gastric, and pancreatic cancers. Suppression of GIPC1 in human pancreatic cancer cells inhibits in vivo tumor growth in immunodeficient mice. To better understand GIPC1 function, we suppressed its expression in human breast and colorectal cancer cell lines and human mammary epithelial cells (HMECs) and assayed both gene expression and cellular phenotype. Suppression of GIPC1 promotes apoptosis in MCF-7, MDA-MD231, SKBR-3, SW480, and SW620 cells and impairs anchorage-independent colony formation of HMECs. These observations indicate GIPC1 plays an essential role in oncogenic transformation, and its expression is necessary for the survival of human breast and colorectal cancer cells. Additionally, a GIPC1 knock-down gene signature was used to interrogate publically available breast and ovarian cancer microarray datasets. This GIPC1 signature statistically correlates with a number of breast and ovarian cancer phenotypes and clinical outcomes, including patient survival. Taken together, these data indicate that GIPC1 inhibition may represent a new target for therapeutic development for the treatment of human cancers
    corecore