20 research outputs found

    STUDYING VASCULAR MORPHOLOGIES IN THE AGED HUMAN BRAIN USING LARGE AUTOPSY DATASETS

    Get PDF
    Cerebrovascular disease is a major cause of dementia in elderly individuals, especially Black/African Americans. Within my dissertation, we focused on two vascular morphologies that affect small vessels: brain arteriolosclerosis (B-ASC) and multi-vascular profiles (MVPs). B-ASC is characterized by degenerative thickening of the wall of brain arterioles. The risk factors, cognitive sequelae, and co-pathologies of B-ASC are not fully understood. To address this, we used multimodal data from the National Alzheimer’s Coordinating Center, Alzheimer’s Disease Neuroimaging Initiative, and brain-banked tissue samples from the University of Kentucky Alzheimer’s Disease Center (UK-ADC) brain repository. We analyzed two age at death groups separately: \u3c 80 years and ≥ 80 years. Hypertension was a risk factor in the \u3c 80 years at death group. In addition, an ABCC9 gene variant (rs704180), previously associated with aging-related hippocampal sclerosis, was associated with B-ASC in the ≥ 80 years at death group. With respect to cognition as determined by test scores, severe B-ASC was associated with worse global cognition in both age groups. With brain-banked tissue samples, we described B-ASC’s relationship to hippocampal sclerosis of aging (HS-Aging), a pathology characterized by neuronal cell loss in the hippocampal region not due to Alzheimer’s disease. We also studied MVPs, which are characterized by multiple small vessel lumens within a single vascular (Virchow-Robin) space. Little information exists on the frequency, risk factors, and co-pathologies of MVPs. Therefore, we used samples and data from the UK-ADC, University of Kentucky pathology department, and University of Pittsburgh pathology department to address this information. We only found MVPs to be correlated with age. Lastly, given the high prevalence of cerebrovascular disease and dementia in Black/African Americans, we discussed the challenges and considerations for studying Blacks/African Americans in these contexts

    Rod-Shaped Microglia Morphology Is Associated with Aging in 2 Human Autopsy Series

    Get PDF
    A subtype of microglia is defined by the morphological appearance of the cells as rod-shaped. Little is known about this intriguing cell type, as there are only a few case reports describing rod-shaped microglia in the neuropathological literature. Rod-shaped microglia were shown recently to account for a substantial proportion of the microglia cells in the hippocampus of both demented and cognitively intact aged individuals. We hypothesized that aging could be a defining feature in the occurrence of rod-shaped microglia. To test this hypothesis, two independent series of autopsy cases (total n=168 cases), which covered the adult lifespan from 20 – 100+ years old, were included in the study. The presence or absence of rod-shaped microglia was scored on IBA1 immunohistochemically stained slides for the hippocampus and cortex. We found that age was one of the strongest determinants for the presence of rod-shaped microglia in the hippocampus and the cortex. We found no association with the presence of rod-shaped microglia and a self-reported history of a TBI. Alzheimer’s disease related pathology was found to influence the presence of rod-shaped microglia, but only in the parietal cortex and not in the hippocampus or temporal cortex. Future studies are warranted to determine the functional relevance of rod-shaped microglia in supporting the health of neurons in the aged brain, and the signaling processes that regulate the formation of rod-shaped microglia

    ABCC9/SUR2 in the Brain: Implications for Hippocampal Sclerosis of Aging and a Potential Therapeutic Target

    Get PDF
    The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium (“K ATP ”) channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The K ATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9 /SUR2 may provide a “druggable target”, relevant perhaps to both HS-Aging and Alzheimer\u27s disease. We conclude that more work is required to better understand the roles of ABCC9 /SUR2 in the human brain during health and disease conditions

    Dystrophic Microglia Are Associated with Neurodegenerative Disease and not Healthy Aging in the Human Brain

    Get PDF
    Loss of physiological microglial function may increase the propagation of neurodegenerative diseases. Cellular senescence is a hallmark of aging; thus, we hypothesized age could be a cause of dystrophic microglia. Stereological counts were performed for total microglia, 2 microglia morphologies (hypertrophic and dystrophic) across the human lifespan. An age-associated increase in the number of dystrophic microglia was found in the hippocampus and frontal cortex. However, the increase in dystrophic microglia was proportional to the age-related increase in the total number of microglia. Thus, aging alone does not explain the presence of dystrophic microglia. We next tested if dystrophic microglia could be a disease-associated microglia morphology. Compared with controls, the number of dystrophic microglia was greater in cases with either Alzheimer\u27s disease, dementia with Lewy bodies, or limbic-predominant age-related TDP-43 encephalopathy. These results demonstrate that microglia dystrophy, and not hypertrophic microglia, are the disease-associated microglia morphology. Finally, we found strong evidence for iron homeostasis changes in dystrophic microglia, providing a possible molecular mechanism driving the degeneration of microglia in neurodegenerative disease

    Novel Human \u3cem\u3eABCC9/SUR2\u3c/em\u3e Brain-Expressed Transcripts and an eQTL Relevant to Hippocampal Sclerosis of Aging

    Get PDF
    ABCC9 genetic polymorphisms are associated with increased risk for various human diseases including hippocampal sclerosis of aging. The main goals of this study were 1 \u3e to detect the ABCC9 variants and define the specific 3′ untranslated region (3′UTR) for each variant in human brain, and 2 \u3e to determine whether a polymorphism (rs704180) associated with risk for hippocampal sclerosis of aging pathology is also associated with variation in ABCC9 transcript expression and/or splicing. Rapid amplification of ABCC9 cDNA ends (3′RACE) provided evidence of novel 3′ UTR portions of ABCC9 in human brain. In silico and experimental studies were performed focusing on the single nucleotide polymorphism, rs704180. Analyses from multiple databases, focusing on rs704180 only, indicated that this risk allele is a local expression quantitative trait locus (eQTL). Analyses of RNA from human brains showed increased ABCC9 transcript levels in individuals with the risk genotype, corresponding with enrichment for a shorter 3′ UTR which may be more stable than variants with the longer 3′ UTR. MicroRNA transfection experiments yielded results compatible with the hypothesis that miR‐30c causes down‐regulation of SUR2 transcripts with the longer 3′ UTR. Thus we report evidence of complex ABCC9 genetic regulation in brain, which may be of direct relevance to human disease

    Disease-Related Microglia Heterogeneity in the Hippocampus of Alzheimer\u27s Disease, Dementia with Lewy Bodies, and Hippocampal Sclerosis of Aging

    Get PDF
    Introduction: Neuropathological, genetic, and biochemical studies have provided support for the hypothesis that microglia participate in Alzheimer\u27s disease (AD) pathogenesis. Despite the extensive characterization of AD microglia, there are still many unanswered questions, and little is known about microglial morphology in other common forms of age-related dementia: particularly, dementia with Lewy bodies (DLB) and hippocampal sclerosis of aging (HS-Aging). In addition, no prior studies have attempted to compare and contrast the microglia morphology in the hippocampus of various neurodegenerative conditions. Results: Here we studied cases with pathologically-confirmed AD (n = 7), HS-Aging (n = 7), AD + HS-aging (n = 4), DLB (n = 12), and normal (cognitively intact) controls (NC) (n = 9) from the University of Kentucky Alzheimer\u27s Disease Center autopsy cohort. We defined five microglia morphological phenotypes in the autopsy samples: ramified, hypertrophic, dystrophic, rod-shaped, and amoeboid. The Aperio ScanScope digital neuropathological tool was used along with two well-known microglial markers: IBA1 (a marker for both resting and activated microglia) and CD68 (a lysosomal marker in macrophages/microglia associated with phagocytic cells). Hippocampal staining analyses included studies of subregions within the hippocampal formation and nearby white matter. Using these tools and methods, we describe variation in microglial characteristics that show some degree of disease specificity, including, (1) increased microglia density and number in HS-aging and AD + HS-aging; (2) low microglia density in DLB; (3) increased number of dystrophic microglia in HS-aging; and (4) increased proportion of dystrophic to all microglia in DLB. Conclusions: We conclude that variations in morphologies among microglial cells, and cells of macrophage lineage, can help guide future work connecting neuroinflammatory mechanisms with specific neurodegenerative disease subtypes

    Challenges and Considerations Related to Studying Dementia in Blacks/African Americans

    Get PDF
    Blacks/African Americans have been reported to be ~2–4 times more likely to develop clinical Alzheimer’s disease (AD) compared to Whites. Unfortunately, study design challenges (e.g., recruitment bias), racism, mistrust of healthcare providers and biomedical researchers, confounders related to socioeconomic status, and other sources of bias are often ignored when interpreting differences in human subjects categorized by race. Failure to account for these factors can lead to misinterpretation of results, reification of race as biology, discrimination, and missed or delayed diagnoses. Here we provide a selected historical background, discuss challenges, present opportunities, and suggest considerations for studying health outcomes among racial/ethnic groups. We encourage neuroscientists to consider shifting away from using biologic determination to interpret data, and work instead toward a paradigm of incorporating both biological and socio-environmental factors known to affect health outcomes with the goal of understanding and improving dementia treatments for Blacks/African Americans and other underserved populations

    Brain arteriolosclerosis

    Get PDF
    Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer’s disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g. hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that include consideration of comorbid diseases, B-ASC is independently associated with impairments in global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability

    \u3cem\u3eABCC9\u3c/em\u3e Gene Polymorphism Is Associated with Hippocampal Sclerosis of Aging Pathology

    Get PDF
    Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer\u27s Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer\u27s Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer\u27s Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10-9), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor

    Enhancing the Understanding of Chemistry with 21st Century Technology

    No full text
    General chemistry is a difficult subject for high school and undergraduate students. The difficulty of this subject lies in the comprehension of the abstract concepts of atoms, molecules, and chemical reactions. In-class demonstrations are a useful pedagogic tool to resolve ambiguities of general chemistry. Unfortunately, a certain percent of high schools and universities lack the necessary resources and training needed for faculty to perform these demonstrations for their students. To address this problem, I assisted Dr. Fitzgerald B. Bramwell of the University of Kentucky Chemistry Department in this traditional scholarly effort, by helping to produce a source book that uses the power of 21st century technology to present useful chemical demonstrations for university and high school level chemistry instructors. My efforts were directed toward filming and editing demonstrations that result in the production of a comprehensive series in a DVD format. This DVD contains real-time chemical demonstrations supplemented by contributions from various Chemistry Department faculty and staff members. The purpose of this scholarly project is to provide chemistry instructors with a powerful, innovative and unique tool to aid in the teaching and comprehension of chemical concepts. In order to evaluate the effectiveness of the DVD format, we will use focus groups consisting of regional high school teachers and chemistry professors. We will use their meaningful criticisms to strengthen the practicality of this effort. After this process, I hope to see this product disseminated in Kentucky high schools and universities with a special emphasis on Fayette County. I hope that this source book will enhance the comprehension of chemistry students and improve the teaching effectiveness by chemistry professors
    corecore