24 research outputs found

    TREM2 Expression in Schizophrenia

    Get PDF
    TREM2 and TYROBP are causal genes for Nasu–Hakola disease (NHD), a rare autosomal recessive disease characterized by bone lesions and early-onset progressive dementia. TREM2 forms a receptor signaling complex with TYROBP, which triggers the activation of immune responses in macrophages and dendritic cells, and the functional polymorphism of TREM2 is reported to be associated with neurodegenerative disorders such as Alzheimer’s disease (AD). The objective of this study was to reveal the involvement of TYROBP and TREM2 in the pathophysiology of AD and schizophrenia. Methods: We investigated the mRNA expression level of the 2 genes in leukocytes of 26 patients with AD and 24 with schizophrenia in comparison with age-matched controls. Moreover, we performed gene association analysis between these 2 genes and schizophrenia. Results: No differences were found in TYROBP mRNA expression in patients with AD and schizophrenia; however, TREM2 mRNA expression was increased in patients with AD and schizophrenia compared with controls (P < 0.001). There were no genetic associations of either gene with schizophrenia in Japanese patients. Conclusion: TREM2 expression in leukocytes is elevated not only in AD but also in schizophrenia. Inflammatory processes involving TREM2 may occur in schizophrenia, as observed in neurocognitive disorders such as AD. TREM2 expression in leukocytes may be a novel biomarker for neurological and psychiatric disorders

    EGUIDE project and treatment guidelines

    Get PDF
    Aim: Although treatment guidelines for pharmacological therapy for schizophrenia and major depressive disorder have been issued by the Japanese Societies of Neuropsychopharmacology and Mood Disorders, these guidelines have not been well applied by psychiatrists throughout the nation. To address this issue, we developed the ‘Effectiveness of Guidelines for Dissemination and Education in Psychiatric Treatment (EGUIDE)’ integrated education programs for psychiatrists to disseminate the clinical guidelines. Additionally, we conducted a systematic efficacy evaluation of the programs. Methods: Four hundred thirteen out of 461 psychiatrists attended two 1‐day educational programs based on the treatment guidelines for schizophrenia and major depressive disorder from October 2016 to March 2018. We measured the participants’ clinical knowledge of the treatment guidelines using self‐completed questionnaires administered before and after the program to assess the effectiveness of the programs for improving knowledge. We also examined the relation between the participants’ demographics and their clinical knowledge scores. Results: The clinical knowledge scores for both guidelines were significantly improved after the program. There was no correlation between clinical knowledge and participant demographics for the program on schizophrenia; however, a weak positive correlation was found between clinical knowledge and the years of professional experience for the program on major depressive disorder. Conclusion: Our results provide evidence that educational programs on the clinical practices recommended in guidelines for schizophrenia and major depressive disorder might effectively improve participants’ clinical knowledge of the guidelines. These data are encouraging to facilitate the standardization of clinical practices for psychiatric disorders

    Predictive factors for hyperglycaemic progression in patients with schizophrenia or bipolar disorder

    Get PDF
    Background: Patients with schizophrenia or bipolar disorder have a high risk of developing type 2 diabetes. Aims: To identify predictive factors for hyperglycaemic progression in individuals with schizophrenia or bipolar disorder and to determine whether hyperglycaemic progression rates differ among antipsychotics in regular clinical practice. Method: We recruited 1166 patients who initially had normal or prediabetic glucose levels for a nationwide, multisite, l-year prospective cohort study to determine predictive factors for hyperglycaemic progression. We also examined whether hyperglycaemic progression varied among patients receiving monotherapy with the six most frequently used antipsychotics. Results: High baseline serum triglycerides and coexisting hypertension significantly predicted hyperglycaemic progression. The six most frequently used antipsychotics did not significantly differ in their associated hyperglycaemic progression rates over the 1-year observation period. Conclusions: Clinicians should carefully evaluate baseline serum triglycerides and coexisting hypertension and perform strict longitudinal monitoring irrespective of the antipsychotic used

    Table_2_Metabolism-linked methylotaxis sensors responsible for plant colonization in Methylobacterium aquaticum strain 22A.xlsx

    No full text
    Motile bacteria take a competitive advantage in colonization of plant surfaces to establish beneficial associations that eventually support plant health. Plant exudates serve not only as primary growth substrates for bacteria but also as bacterial chemotaxis attractants. A number of plant-derived compounds and corresponding chemotaxis sensors have been documented, however, the sensors for methanol, one of the major volatile compounds released by plants, have not been identified. Methylobacterium species are ubiquitous plant surface-symbiotic, methylotrophic bacteria. A plant-growth promoting bacterium, M. aquaticum strain 22A exhibits chemotaxis toward methanol (methylotaxis). Its genome encodes 52 methyl-accepting chemotaxis proteins (MCPs), among which we identified three MCPs (methylotaxis proteins, MtpA, MtpB, and MtpC) responsible for methylotaxis. The triple gene mutant of the MCPs exhibited no methylotaxis, slower gathering to plant tissues, and less efficient colonization on plants than the wild type, suggesting that the methylotaxis mediates initiation of plant-Methylobacterium symbiosis and engages in proliferation on plants. To examine how these MCPs are operating methylotaxis, we generated multiple gene knockouts of the MCPs, and Ca2+-dependent MxaFI and lanthanide (Ln3+)-dependent XoxF methanol dehydrogenases (MDHs), whose expression is regulated by the presence of Ln3+. MtpA was found to be a cytosolic sensor that conducts formaldehyde taxis (formtaxis), as well as methylotaxis when MDHs generate formaldehyde. MtpB contained a dCache domain and exhibited differential cellular localization in response to La3+. MtpB expression was induced by La3+, and its activity required XoxF1. MtpC exhibited typical cell pole localization, required MxaFI activity, and was regulated under MxbDM that is also required for MxaF expression. Strain 22A methylotaxis is realized by three independent MCPs, two of which monitor methanol oxidation by Ln3+-regulated MDHs, and one of which monitors the common methanol oxidation product, formaldehyde. We propose that methanol metabolism-linked chemotaxis is the key factor for the efficient colonization of Methylobacterium on plants.</p
    corecore