41 research outputs found

    抗精神病薬によるジストニアの発現機序に関する実験的研究 σ (sigma) sites の関与について

    Get PDF
    Published ErratumBurkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.Wellcome Trus

    Nucleotide sequence and transcriptional analysis of the E. coli ush

    No full text

    Cobalt activation of Escherichia coli 5'-nucleotidase is due to zinc ion displacement at only one of two metal-ion-binding sites.

    No full text
    Escherichia coli 5'-nucleotidase activity is stimulated 30- to 50-fold in vitro by the addition of Co(2+). Seven residues from conserved sequence motifs implicated in the catalytic and metal-ion-binding sites of E. coli 5'-nucleotidase (Asp(41), His(43), Asp(84), His(117), Glu(118), His(217) and His(252)) were selected for modification using site-directed mutagenesis of the cloned ushA gene. On the basis of comparative studies between the resultant mutant proteins and the wild-type enzyme, a model is proposed for E. coli 5'-nucleotidase in which a Co(2+) ion may displace the Zn(2+) ion at only one of two metal-ion-binding sites; the other metal-ion-binding site retains the Zn(2+) ion already present. The studies reported herein suggest that displacement occurs at the metal-ion-binding site consisting of residues Asp(84), Asn(116), His(217) and His(252), leading to the observed increase in 5'-nucleotidase activity

    Biased codon usage in signal peptides: A role in protein export

    No full text
    The signal peptide of proteins exported via the general secretory pathway encodes structural features that enable the targeting and export of the protein to the periplasm. Recent studies have shown biased codon usage at the second amino acid position and a high usage of non-optimal codons within the signal peptide. Altering these biases in codon usage can have deleterious effects on protein folding and export. We propose that these codon-usage biases act in concert to optimize the export process through modulating ribosome spacing on the transcript. This highlights a new aspect of protein export and implies that codon usage in the signal peptide encodes signals that are important for protein targeting and export to the periplasm
    corecore