163 research outputs found
Pre-Vaccination Nasopharyngeal Pneumococcal Carriage in a Nigerian Population: Epidemiology and Population Biology
Initiative (AVI) of the Global Alliance for Vaccines and Immunisation (GAVI). However, country data on the burden of pneumococcal disease (IPD) is limited and coverage by available conjugate vaccines is unknown. This study was carried out to describe the pre vaccination epidemiology and population biology of pneumococcal carriage in Nigeria. Methods: This was a cross sectional survey. Nasopharyngeal swabs (NPS) were obtained from a population sample in 1
T-Lymphocyte Subsets in Apparently Healthy Nigerian Children
Population studies showed that there are differences in T-lymphocytes subpopulation of normal children in different regions, and reference values in an area might be different from another. This study compared the values in our population with CDC and WHO reference values. Blood samples from 279 healthy, HIV-negative children <12 years of age were analysed for complete blood count, CD3+, CD4+, CD8+ counts and percentages. Except for CD8%, mean values for all parameters measured significantly decreased with age. CD4+ counts were higher in females than males, P < .05. Using the WHO criteria, 15.9% of subjects had low total lymphocyte count and 20.6% had low CD4 count. Children <3 years had median CD4% lower than WHO normal values. Our median CD4+ counts correlated with CDC values. Values used by WHO in infants are higher than ours. We suggest that our children be assessed using CDC reference values which correlate with ours
Decay Kinetics of an Interferon Gamma Release Assay with Anti-Tuberculosis Therapy in Newly Diagnosed Tuberculosis Cases
Qualitative and quantitative changes in IGRA response offer promise as biomarkers to monitor Tuberculosis (TB) drug therapy, and for the comparison of new interventions. We studied the decay kinetics of TB-specific antigen T-cell responses measured with an in-house ELISPOT assay during the course of therapy.Newly diagnosed sputum smear positive TB cases with typical TB chest radiographs were recruited. All patients were given standard anti-TB treatment. Each subject was followed up for 6 months and treatment outcomes were documented. Blood samples were obtained for the ESAT-6 and CFP-10 (EC) ELISPOT at diagnosis, 1-, 2-, 4- and 6-months. Qualitative and quantitative reversion of the ELISPOT results were assessed with McNemar test, conditional logistic regression and mixed-effects hierarchical Poisson models.A total of 116 cases were recruited and EC ELISPOT was positive for 87% (95 of 109) at recruitment. There was a significant decrease in the proportion of EC ELISPOT positive cases over the treatment period (p<0.001). Most of the reversion occurred between the start and first month of treatment and at completion at 6 months. ESAT-6 had higher median counts compared to CFP-10 at all time points. Counts for each antigen declined significantly with therapy (p<0.001). Reverters had lower median SFUs at the start of treatment compared to non-Reverters for both antigens. Apart from the higher median counts for non-Reverters, no other risk factors for non-reversion were found.TB treatment induces qualitative and quantitative reversion of a positive in-house IGRA in newly diagnosed cases of active TB disease. As this does not occur reliably in the majority of cured individuals, qualitative and quantitative reversion of an IGRA ELISPOT has limited clinical utility as a surrogate marker of treatment efficacy
Comparative performance of the InBios SCoV-2 Detect TM IgG ELISA and the in-house KWTRP ELISA in detecting SARS-CoV-2 spike IgG antibodies in Kenyan populations
The InBios SCoV-2 Detect™ IgG ELISA (InBios) and the in-house KWTRP ELISA (KWTRP) have both been used in the estimation of SARS-CoV-2 seroprevalence in Kenya. Whereas the latter has been validated extensively using local samples, the former has not. Such validation is important for informing the comparability of data across the sites and populations where seroprevalence has been reported. We compared the assays directly using pre-pandemic serum/plasma collected in 2018 from 454 blood donors and 173 malaria cross-sectional survey participants, designated gold standard negatives. As gold standard SARS-CoV-2 positive samples: we assayed serum/plasma from 159 SARS-CoV-2 PCR-positive patients and 166 vaccination-confirmed participants. The overall agreement on correctly classified samples was >0.87 for both assays. The overall specificity was 0.89 (95% CI, 0.87-0.91) for InBios and 0.99 (95% CI, 0.97-0.99) for KWTRP among the gold standard negative samples while the overall sensitivity was 0.97 (95% CI, 0.94-0.98) and 0.93 (95% CI, 0.90- 0.95) for InBios and KWTRP ELISAs respectively, among the gold standard positive samples. In all, the positive predictive value for InBios was 0.83 (95% CI, 0.79-0.87) and 0.98 (95% CI, 0.96-0.99) for KWTRP while the negative predictive value was 0.98 (95% CI, 0.97- 0.99) and 0.97 (95% CI, 0.95-0.98) for InBios and KWTRP respectively. Overall, both assays showed sufficient sensitivity and specificity to estimate SARS-CoV-2 antibodies in different populations in Kenya
Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria
Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates
Effect of ten-valent pneumococcal conjugate vaccine on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance study.
BACKGROUND: Ten-valent pneumococcal conjugate vaccine (PCV10), delivered at 6, 10, and 14 weeks of age was introduced in Kenya in January, 2011, accompanied by a catch-up campaign in Kilifi County for children aged younger than 5 years. Coverage with at least two PCV10 doses in children aged 2-11 months was 80% in 2011 and 84% in 2016; coverage with at least one dose in children aged 12-59 months was 66% in 2011 and 87% in 2016. We aimed to assess PCV10 effect against nasopharyngeal carriage and invasive pneumococcal disease (IPD) in children and adults in Kilifi County. METHODS: This study was done at the KEMRI-Wellcome Trust Research Programme among residents of the Kilifi Health and Demographic Surveillance System, a rural community on the Kenyan coast covering an area of 891 km2. We linked clinical and microbiological surveillance for IPD among admissions of all ages at Kilifi County Hospital, Kenya, which serves the community, to the Kilifi Health and Demographic Surveillance System from 1999 to 2016. We calculated the incidence rate ratio (IRR) comparing the prevaccine (Jan 1, 1999-Dec 31, 2010) and postvaccine (Jan 1, 2012-Dec 31, 2016) eras, adjusted for confounding, and reported percentage reduction in IPD as 1 minus IRR. Annual cross-sectional surveys of nasopharyngeal carriage were done from 2009 to 2016. FINDINGS: Surveillance identified 667 cases of IPD in 3 211 403 person-years of observation. Yearly IPD incidence in children younger than 5 years reduced sharply in 2011 following vaccine introduction and remained low (PCV10-type IPD: 60·8 cases per 100 000 in the prevaccine era vs 3·2 per 100 000 in the postvaccine era [adjusted IRR 0·08, 95% CI 0·03-0·22]; IPD caused by any serotype: 81·6 per 100 000 vs 15·3 per 100 000 [0·32, 0·17-0·60]). PCV10-type IPD also declined in the post-vaccination era in unvaccinated age groups (<2 months [no cases in the postvaccine era], 5-14 years [adjusted IRR 0·26, 95% CI 0·11-0·59], and ≥15 years [0·19, 0·07-0·51]). Incidence of non-PCV10-type IPD did not differ between eras. In children younger than 5 years, PCV10-type carriage declined between eras (age-standardised adjusted prevalence ratio 0·26, 95% CI 0·19-0·35) and non-PCV10-type carriage increased (1·71, 1·47-1·99). INTERPRETATION: Introduction of PCV10 in Kenya, accompanied by a catch-up campaign, resulted in a substantial reduction in PCV10-type IPD in children and adults without significant replacement disease. Although the catch-up campaign is likely to have brought forward the benefits by several years, the study suggests that routine infant PCV10 immunisation programmes will provide substantial direct and indirect protection in low-income settings in tropical Africa. FUNDING: Gavi, The Vaccine Alliance and The Wellcome Trust of Great Britain
Associations between nasopharyngeal carriage of Group B Streptococcus and other respiratory pathogens during early infancy
Determinants of high residual post-PCV13 pneumococcal vaccine-type carriage in Blantyre, Malawi:a modelling study
BACKGROUND: In November 2011, Malawi introduced the 13-valent pneumococcal conjugate vaccine (PCV13) into the routine infant schedule. Four to 7 years after introduction (2015-2018), rolling prospective nasopharyngeal carriage surveys were performed in the city of Blantyre. Carriage of Streptococcus pneumoniae vaccine serotypes (VT) remained higher than reported in high-income countries, and impact was asymmetric across age groups.METHODS: A dynamic transmission model was fit to survey data using a Bayesian Markov-chain Monte Carlo approach, to obtain insights into the determinants of post-PCV13 age-specific VT carriage.RESULTS: Accumulation of naturally acquired immunity with age and age-specific transmission potential were both key to reproducing the observed data. VT carriage reduction peaked sequentially over time, earlier in younger and later in older age groups. Estimated vaccine efficacy (protection against carriage) was 66.87% (95% CI 50.49-82.26%), similar to previous estimates. Ten-year projected vaccine impact (VT carriage reduction) among 0-9 years old was lower than observed in other settings, at 76.23% (CI 95% 68.02-81.96%), with sensitivity analyses demonstrating this to be mainly driven by a high local force of infection.CONCLUSIONS: There are both vaccine-related and host-related determinants of post-PCV13 pneumococcal VT transmission in Blantyre with vaccine impact determined by an age-specific, local force of infection. These findings are likely to be generalisable to other Sub-Saharan African countries in which PCV impact on carriage (and therefore herd protection) has been lower than desired, and have implications for the interpretation of post-PCV carriage studies and future vaccination programs.</p
The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern—particularly Alpha, Beta, Delta, and Omicron—on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Incidence of macrolide–lincosamide–streptogramin B resistance amongst beta-haemolytic streptococci in The Gambia
- …
