42 research outputs found
An integrated approach of immunogenomics and bioinformatics to identify new Tumor Associated Antigens (TAA) for mammary cancer immunological prevention
BACKGROUND: Neoplastic transformation is a multistep process in which distinct gene products of specific cell regulatory pathways are involved at each stage. Identification of overexpressed genes provides an unprecedented opportunity to address the immune system against antigens typical of defined stages of neoplastic transformation. HER-2/neu/ERBB2 (Her2) oncogene is a prototype of deregulated oncogenic protein kinase membrane receptors. Mice transgenic for rat Her2 (BALB-neuT mice) were studied to evaluate the stage in which vaccines can prevent the onset of Her2 driven mammary carcinomas. As Her2 is not overexpressed in all mammary carcinomas, definition of an additional set of tumor associated antigens (TAAs) expressed at defined stages by most breast carcinomas would allow a broader coverage of vaccination. To address this question, a meta-analysis was performed on two transcription profile studies [1,2] to identify a set of new TAA targets to be used instead of or in conjunction with Her2. RESULTS: The five TAAs identified (Tes, Rcn2, Rnf4, Cradd, Galnt3) are those whose expression is linearly related to the tumor mass increase in BALB-neuT mammary glands. Moreover, they have a low expression in normal tissues and are generally expressed in human breast tumors, though at a lower level than Her2. CONCLUSION: Although the number of putative TAAs identified is limited, this pilot study suggests that meta-analysis of expression profiles produces results that could assist in the designing of pre-clinical immunopreventive vaccines
A new approach to deposit homogeneous samples of asbestos fibres for toxicological tests in vitro
In this paper we describe the results obtained with a novel method to prepare depositions of asbestos fibres for toxicological tests in vitro. The technique is based on a micro-dispenser, working as an inkjet printer, able to deposit micro-sized droplets from a suspension of fibres in a liquid medium; we used here a highly evaporating liquid (ethanol) to reduce the experimental time, however other solvents could be used. Both the amount and spatial distribution of fibres on the substrate can be controlled by adjusting the parameters of the micro-dispenser such as deposition area, deposition time, uniformity and volume of the deposited liquid. Statistical analysis of images obtained by optical and scanning electron microscopy shows that this technique produces an extremely homogeneous distribution of fibers. Specifically, the number of deposited single fibres is maximized (up to 20 times), a feature that is essential when performing viability tests where agglomerated or untangled fibrous particles need to be avoided
Agreement of site and central readings of ileocolonoscopic scores in Crohn's disease: comparison using data from the EXTEND trial
Background and AimsCentralized endoscopic scoring may reduce variability, but evidence is lacking in patients with Crohn’s disease. We assessed the agreement of endoscopic scorings between site endoscopists and one central reader by using data from the adalimumab Crohn’s disease clinical trial EXTEND.MethodsAgreement between readers for Crohn’s Disease Endoscopic Index of Severity (CDEIS)–scored endoscopies from 6 sites and Simple Endoscopic Score for Crohn’s Disease (SES-CD)–scored endoscopies from 19 sites in EXTEND was evaluated at baseline and weeks 12 and 52. Agreement on total scores was calculated by using intraclass correlation coefficient (ICC). Kappa statistic or Spearman correlation coefficient measured the agreement between readers for each ileocolonic segment on CDEIS variables including deep ulceration, surface involved, and ulcerated surface and SES-CD variables including ulcerated surface, size of ulcers, and affected surface.ResultsICCs on mean scores at baseline and weeks 12 and 52 were 0.78, 0.92, and 0.86 (CDEIS), and 0.77, 0.86, and 0.82 (SES-CD), respectively. Site endoscopists consistently reported higher scores. High agreement was observed for most segments and all time points for CDEIS variables and SES-CD large ulcers. Weak agreement occurred for the right side of the colon at all time points for CDEIS deep ulceration and SES-CD large ulcers and at baseline and week 12 for CDEIS ulcerated surface. Fair/moderate agreement occurred for SES-CD ulcerated surface and moderate/high agreement for affected surface for all segments and time points.ConclusionsSite and central readers showed high agreement on total CDEIS and SES-CD scores overall, whereas variability for individual segments was observed. Weakest agreement occurred at baseline, with a greater difference for SES-CD than for CDEIS score. (Clinical trial registration number: NCT00348283.
HAX1 is a novel binding partner of Che-1/AATF. Implications in oxidative stress cell response
HAX1 is a multifunctional protein involved in the antagonism of apoptosis in cellular response to oxidative stress. In the present study we identified HAX1 as a novel binding partner for Che-1/AATF, a pro-survival factor which plays a crucial role in fundamental processes, including response to multiple stresses and apoptosis. HAX1 and Che-1 proteins show extensive colocalization in mitochondria and we demonstrated that their association is strengthened after oxidative stress stimuli. Interestingly, in MCF-7 cells, resembling luminal estrogen receptor (ER) positive breast cancer, we found that Che-1 depletion correlates with decreased HAX1 mRNA and protein levels, and this event is not significantly affected by oxidative stress induction. Furthermore, we observed an enhancement of the previously reported interaction between HAX1 and estrogen receptor alpha (ERα) upon H2O2 treatment. These results indicate the two anti-apoptotic proteins HAX1 and Che-1 as coordinated players in cellular response to oxidative stress with a potential role in estrogen sensitive breast cancer cells
Preprocedural Level of Soluble CD40L Is Predictive of Enhanced Inflammatory Response and Restenosis After Coronary Angioplasty
Background—
Inflammation plays a pathogenic role in the development of restenosis after percutaneous transluminal coronary angioplasty (PTCA). CD40–CD40L interaction is involved in the pathogenesis of atherosclerosis; however, its role in the pathophysiology of restenosis is still unclear. We tested the hypothesis that soluble CD40L (sCD40L) may be involved in the process of restenosis and that it exerts its effect by triggering a complex group of inflammatory reactions on endothelial and mononuclear cells.
Methods and Results—
We studied 70 patients who underwent PTCA and who had repeated angiograms at 6-month follow-up. Plasma sCD40L was measured before and 1, 5, 15, and 180 days after PTCA, whereas plasma soluble intercellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, E-selectin, and monocyte chemoattractant protein (MCP)-1 were measured before and 24 hours after PTCA. Furthermore, the release of adhesion molecules and MCP-1 and the ability to repair an injury in endothelial cells, as well as the generation of O
2
−
in monocytes, were analyzed in vitro after stimulation with serum from patients or healthy control subjects. Restenosis occurred in 18 patients (26%). Restenotic patients had preprocedural sCD40L significantly higher than patients with favorable outcomes (2.13±0.3 versus 0.87±0.12 ng/mL,
P
<0.0001). Elevated sCD40L at baseline was significantly correlated with adhesion molecules and MCP-1 generation after PTCA and with lumen loss at 6-month follow-up. Furthermore, high sCD40L was directly associated in vitro with adhesion molecules and MCP-1 generation and impaired migration in endothelial cells and with enhanced O
2
−
generation in monocytes.
Conclusions—
We conclude that increased sCD40L is associated with late restenosis after PTCA. This may provide an important biochemical link between restenosis and aspirin-insensitive platelet activation. These results provide a rationale for studies with new antiplatelet treatments in patients who underwent PTCA
Dynamic-FROST: Schnorr Threshold Signatures with a Flexible Committee
Threshold signatures enable any subgroup of predefined cardinality out of a committee of participants to generate a valid, aggregated signature.
Although several -threshold signature schemes exist, most of them assume that the threshold and the set of participants do not change over time.
Practical applications of threshold signatures might benefit from the possibility of updating the threshold or the committee of participants. Examples of such applications are consensus algorithms and blockchain wallets.
In this paper, we present Dynamic-FROST (D-FROST, for short) that combines FROST, a Schnorr threshold signature scheme, with CHURP, a dynamic proactive secret sharing scheme. The resulting protocol is the first Schnorr threshold signature scheme that accommodates changes in both the committee and the threshold value without relying on a trusted third party.
Besides detailing the protocol, we present a proof of its security: as the original signing scheme, D-FROST preserves the property of Existential Unforgeability under Chosen-Message Attack
p130Cas/Cyclooxygenase-2 axis in the control of mesenchymal plasticity of breast cancer cells
Introduction:
Intrinsic plasticity of breast carcinoma cells allows them to undergo a transient and reversible conversion into mesenchymal cells to disseminate into distant organs, where they can re-differentiate to an epithelial-like status to form a cohesive secondary mass. The p130Cas scaffold protein is overexpressed in human ER+ and HER2+ breast cancer where it contributes to cancer progression, invasion and resistance to therapy. However, its role in regulating mesenchymal aggressive breast cancer cells remains to be determined. The aim of this study was to investigate the molecular and functional involvement of this adaptor protein in breast cancer cell plasticity.
Methods:
We used silencing strategies and rescue experiments to evaluate phenotypic and biochemical changes from mesenchymal to epithelial traits in breast tumor cell lines. In the mouse A17 cell model previously related to mesenchymal cancer stem cells and basal-like breast cancer, we biochemically dissected the signaling pathways involved and performed functional in vivo tumor growth ability assays. The significance of the signaling platform was assessed in a human setting through the use of specific inhibitors in aggressive MDA-MB-231 subpopulation LM2-4175 cells. To evaluate the clinical relevance of the results, we analyzed publicly available microarray data from the Netherlands Cancer Institute and from the Koo Foundation Sun Yat-Sen Cancer Center.
Results:
We show that p130Cas silencing induces loss of mesenchymal features, by downregulating Vimentin, Snail, Slug and Twist transcriptional factors, resulting in the acquirement of epithelial-like traits. Mechanistically, p130Cas controls Cyclooxygenase-2 transcriptional expression, which in turn contributes to p130Cas-dependent maintenance of mesenchymal phenotype. This cascade of events also compromises in vivo tumor growth through inhibition of cell signaling controlling cell cycle progression. c-Src and JNK kinases are sequential players in p130Cas/ Cyclooxygenase-2 axis and their pharmacological inhibition is sufficient to downregulate Cyclooxygenase-2 leading to an epithelial phenotype. Finally, in silico microarray data analysis indicates that p130Cas and Cyclooxygenase-2 concomitant overexpression predicts poor survival and high probability of breast tumor recurrence.
Conclusions:
Overall, these data identify a new p130Cas/Cyclooxygenase-2 axis as a crucial element in the control of breast tumor plasticity, opening new therapeutic strategies leading to inhibition of these pathways in aggressive breast carcinoma
Multiorgan Metastasis of Human HER-2+ Breast Cancer in Rag2−/−;Il2rg−/− Mice and Treatment with PI3K Inhibitor
In vivo studies of the metastatic process are severely hampered by the fact that most human tumor cell lines derived from highly metastatic tumors fail to consistently metastasize in immunodeficient mice like nude mice. We describe a model system based on a highly immunodeficient double knockout mouse, Rag2−/−;Il2rg−/−, which lacks T, B and NK cell activity. In this model human metastatic HER-2+ breast cancer cells displayed their full multiorgan metastatic potential, without the need for selections or additional manipulations of the system. Human HER-2+ breast cancer cell lines MDA-MB-453 and BT-474 injected into Rag2−/−;Il2rg−/− mice faithfully reproduced human cancer dissemination, with multiple metastatic sites that included lungs, bones, brain, liver, ovaries, and others. Multiorgan metastatic spread was obtained both from local tumors, growing orthotopically or subcutaneously, and from cells injected intravenously. The problem of brain recurrencies is acutely felt in HER-2+ breast cancer, because monoclonal antibodies against HER-2 penetrate poorly the blood-brain barrier. We studied whether a novel oral small molecule inhibitor of downstream PI3K, selected for its penetration of the blood-brain barrier, could affect multiorgan metastatic spread in Rag2−/−; Il2rg−/− mice. NVP-BKM120 effectively controlled metastatic growth in multiple organs, and resulted in a significant proportion of mice free from brain and bone metastases. Human HER-2+ human breast cancer cells in Rag2−/−;Il2rg−/− mice faithfully reproduced the multiorgan metastatic pattern observed in patients, thus allowing the investigation of metastatic mechanisms and the preclinical study of novel antimetastatic agents
A Polymorphism in the Cyclooxygenase 2 Gene as an Inherited Protective Factor Against Myocardial Infarction and Stroke
ContextMyocardial infarction (MI) and ischemic stroke are thought to be caused by matrix digestion by metalloproteinases (MMPs) leading to rupture of atherosclerotic plaques. Production of macrophage MMP-2 and MMP-9 is induced by cyclooxygenase 2 (COX-2) and prostaglandin E2 synthesis. Although COX-2 expression may be genetically determined, the relation between COX-2 polymorphisms and the risk of MI and stroke is unclear.ObjectiveTo investigate the relationship between the −765G→C polymorphism of the COX-2 gene and clinically evident plaque rupture.Design, Setting, and ParticipantsProspective, matched case-control study conducted between March 2002 and October 2003 among 864 patients with first MI or atherothrombotic ischemic stroke and 864 hospitalized controls. The groups were matched for age, sex, body mass index, smoking, hypertension, hypercholesterolemia, and diabetes. The −765G→C variant of the COX-2 gene was genotyped by restriction endonuclease digestion of polymerase chain reaction products.Main Outcome MeasuresPresence of the −765G→C polymorphism of the COX-2 gene; COX-2, MMP-2, and MMP-9 expression and activity in plaques and in peripheral monocytes; urinary 6-keto PGF1α (marker of endothelial prostacyclin); and endothelium-dependent and -independent forearm blood flow vasodilation.ResultsThe prevalence of −765GC was 2.41 times higher among controls than among cases (43.3% vs 17.9%; P<.001). The prevalence of −765CC homozygosity was 5.81 times higher (6.4% vs 1.1%; P = .04). Among participants carrying the −765GC and −765CC genotypes, the prevalence ratios for MI or stroke were 0.48 (95% CI, 0.36-0.68) and 0.33 (95% CI, 0.24-0.55), respectively. Expression of COX-2 and MMPs was significantly lower in atherosclerotic plaques from participants carrying the −765C allele, while the −765G→C polymorphism did not affect endothelial prostacyclin biosynthesis or endothelium-dependent vasodilation in vivo. In subgroup analyses (n = 224 cases), serum high-sensitivity C-reactive protein was significantly lower in patients carrying the −765C allele (mean [SD], 0.78 [0.1] vs 2.56 [0.4] mg/L; P = .04).ConclusionsWe found that the −765G→C polymorphism of the COX-2 gene is associated with a decreased risk of MI and stroke. Detection of this genotype may be useful for predicting genetic risk of MI and stroke