66 research outputs found

    The interplay between ferroelectricity and electrochemical reactivity on the surface of binary ferroelectric Alx_xB1x_{1-x}N

    Full text link
    Polarization dynamics and domain structure evolution in ferroelectric Al0.93_{0.93}B0.07_{0.07}N are studied using piezoresponse force microscopy and spectroscopies in ambient and controlled atmosphere environments. The application of negative unipolar, and bipolar first-order reverse curve (FORC) waveforms leads to a protrusion-like feature on the Al0.93_{0.93}B0.07_{0.07}N surface and reduction of electromechanical response due to electrochemical reactivity. A surface change is also observed on the application of fast alternating current bias. At the same time, the application of positive biases does not lead to surface changes. Comparatively in a controlled glove box atmosphere, stable polarization patterns can be observed, with minuscule changes in surface morphology. This surface morphology change is not isolated to applying biases to free surface, a similar topographical change is also observed at the electrode edges when cycling a capacitor in ambient environment. The study suggests that surface electrochemical reactivity may have a significant impact on the functionality of this material in the ambient environment. However, even in the controlled atmosphere, the participation of the surface ions in polarization switching phenomena and ionic compensation is possible.Comment: 16 pages; 5 figure

    Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy

    Get PDF
    Spatial heterogeneity in composition and organisation of the primary cell wall affects the mechanics of cellular morphogenesis. However, directly correlating cell wall composition, organisation and mechanics has been challenging. To overcome this barrier, we applied atomic force microscopy coupled with infrared (AFM-IR) spectroscopy to generate spatially correlated maps of chemical and mechanical properties for paraformaldehyde-fixed, intact Arabidopsis thaliana epidermal cell walls. AFM-IR spectra were deconvoluted by non-negative matrix factorisation (NMF) into a linear combination of IR spectral factors representing sets of chemical groups comprising different cell wall components. This approach enables quantification of chemical composition from IR spectral signatures and visualisation of chemical heterogeneity at nanometer resolution. Cross-correlation analysis of the spatial distribution of NMFs and mechanical properties suggests that the carbohydrate composition of cell wall junctions correlates with increased local stiffness. Together, our work establishes new methodology to use AFM-IR for the mechanochemical analysis of intact plant primary cell walls

    Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics

    Full text link
    We propose a self-consistent theoretical approach capable to describe the peculiarities of the anisotropic nanodomain formation induced by a charged AFM probe on non-polar cuts of ferroelectrics. The proposed semi-phenomenological approach accounts for the difference of the threshold fields required for the domain wall motion along non-polar X- and Y - cuts, and polar Z - cut of LiNbO3. The effect steams from the fact, that the minimal distance between the equilibrium atomic positions of domain wall and the profile of lattice pinning barrier appeared different for different directions due to the crystallographic anisotropy. Using relaxation-type equation with cubic nonlinearity we calculated the polarization reversal dynamics during the probe-induced nanodomain formation for different threshold field values. The different velocity of domain growth and consequently equilibrium domain sizes on X-, Y- and Z-cuts of LiNbO3 originate from the anisotropy of the threshold field. Note that the smaller is the threshold field the larger are the domain sizes, and the fact allows explaining several times difference in nanodomain length experimentally observed on X- and Y-cuts of LiNbO3. Obtained results can give insight into the nanoscale anisotropic dynamics of polarization reversal in strongly inhomogeneous electric field.Comment: 22 pages, 8 figure

    Magnetic Texture in Insulating Single Crystal High Entropy Oxide Spinel Films

    Full text link
    Magnetic insulators are important materials for a range of next generation memory and spintronic applications. Structural constraints in this class of devices generally require a clean heterointerface that allows effective magnetic coupling between the insulating layer and the conducting layer. However, there are relatively few examples of magnetic insulators which can be synthesized with surface qualities that would allow these smooth interfaces and precisely tuned interfacial magnetic exchange coupling which might be applicable at room temperature. In this work, we demonstrate an example of how the configurational complexity in the magnetic insulator layer can be used to realize these properties. The entropy-assisted synthesis is used to create single crystal (Mg0.2Ni0.2Fe0.2Co0.2Cu0.2)Fe2O4 films on substrates spanning a range of strain states. These films show smooth surfaces, high resistivity, and strong magnetic responses at room temperature. Local and global magnetic measurements further demonstrate how strain can be used to manipulate magnetic texture and anisotropy. These findings provide insight into how precise magnetic responses can be designed using compositionally complex materials that may find application in next generation magnetic devices
    corecore