37 research outputs found

    Using a distributed Shapley-value based approach to ensure navigability in a social network of smart objects

    Get PDF
    The huge number of nodes that is expected to join the Internet of Things in the short term will add major scalability issues to several procedures. A recent promising approach to these issues is based on social networking solutions to allow objects to autonomously establish social relationships. Every object in the resulting Social IoT (SIoT) exchanges data with its friend objects in a distributed manner to avoid the need for centralized solutions to implement major functionalities, such as: node discovery, information search and trustworthiness management. However, the number and types of established friendship affects network navigability. This paper addresses this issue proposing an efficient, distributed and dynamic strategy for the objects to select the right friends for the benefit of the overall network connectivity. The proposed friendship selection model relies on a Shapley-value based algorithm mapping the friendship selection process in the SIoT onto the coalition formation problem in a corresponding cooperative game. The obtained results show that the proposed solution is able to ensure global navigability, measured in terms of average path length among two nodes in the network, by means of a distributed and wise selection of the number of friend objects a node has to handle

    Enhancing the navigability in a social network of smart objects: a Shapley-value based approach

    Get PDF
    The Internet of Things (IoT) holds the promise to interconnect any possible object capable of providing useful information about the physical world for the benefit of humans' quality of life. The increasing number of heterogeneous objects that the IoT has to manage introduces crucial scalability issues that still need appropriate solutions. In this respect, one promising proposal is the Social IoT (SIoT) paradigm, whose main principle is to enable objects to autonomously establish social links with each other (adhering to rules set by their owners). "Friend" objects exchange data in a distributed manner and this avoids centralized solutions to implement major functions, such as: node discovery, information search, and trustworthiness management. However, the number and types of established friendships affect network navigability. This issue is the focus of this paper, which proposes an efficient, distributed and dynamic solution for the objects to select the right friends for the benefit of the overall network connectivity. The proposed friendship selection mechanism relies on a game theoretic model and a Shapley-value based algorithm. Two different utility functions are defined and evaluated based on either a group degree centrality and an average local clustering parameter. The comparison in terms of global navigability is measured in terms of average path length for the interconnection of any couple of nodes in the network. Results show that the group degree centrality brings to an enhanced degree of navigability thanks to the ability to create a suitable core of hubs

    A subjective model for trustworthiness evaluation in the social Internet of Things

    Get PDF
    The integration of social networking concepts into the Internet of Things (IoT) has led to the so called Social Internet of Things (SIoT) paradigm, according to which the objects are capable of establishing social relationships in an autonomous way with respect to their owners. The benefits are those of improving scalability in information/service discovery when the SIoT is made of huge numbers of heterogeneous nodes, similarly to what happens with social networks among humans. In this paper we focus on the problem of understanding how the information provided by the other members of the SIoT has to be processed so as to build a reliable system on the basis of the behavior of the objects. We define a subjective model for the management of trustworthiness which builds upon the solutions proposed for P2P networks. Each node computes the trustworthiness of its friends on the basis of its own experience and on the opinion of the common friends with the potential service providers. We employ a feedback system and we combine the credibility and centrality of the nodes to evaluate the trust level. Preliminary simulations show the benefits of the proposed model towards the isolation of almost any malicious node in the network

    MIFaaS: A Mobile-IoT-Federation-as-a-Service Model for dynamic cooperation of IoT Cloud Providers

    Get PDF
    In the Internet of Things (IoT) arena, a constant evolution is observed towards the deployment of integrated environments, wherein heterogeneous devices pool their capacities to match wide-ranging user requirements. Solutions for efficient and synergistic cooperation among objects are, therefore, required. This paper suggests a novel paradigm to support dynamic cooperation among private/public local clouds of IoT devices. Differently from . device-oriented approaches typical of Mobile Cloud Computing, the proposed paradigm envisages an . IoT Cloud Provider (ICP)-oriented cooperation, which allows all devices belonging to the same private/public owner to participate in the federation process. Expected result from dynamic federations among ICPs is a remarkable increase in the amount of service requests being satisfied. Different from the Fog Computing vision, the network edge provides only management support and supervision to the proposed Mobile-IoT-Federation-as-a-Service (MIFaaS), thus reducing the deployment cost of peripheral micro data centers. The paper proposes a coalition formation game to account for the interest of rational cooperative ICPs in their own payoff. A proof-of-concept performance evaluation confirms that obtained coalition structures not only guarantee the satisfaction of the players' requirements according to their utility function, but also these introduce significant benefits for the cooperating ICPs in terms of number of tasks being successfully assigned

    Making things socialize in the Internet – Does it help our lives?

    No full text

    From" smart objects" to" social objects": The next evolutionary step of the internet of things

    No full text
    Social networking concepts have been applied to several communication network settings, which span from delay-tolerant to peer-to-peer networks. More recently, one can observe a flourish of proposals aimed at giving social-like capabilities to the objects in the Internet of Things. Such proposals address the design of conceptual (and software) platforms, which can be exploited to easily develop and implement complex applications that require direct interactions among objects. The major goal is to build techniques that allow the network to enhance the level of trust between objects that are "friends" with each other. Furthermore, a social paradigm could definitely guarantee network navigability even if the number of nodes becomes orders of magnitude higher than in the traditional Internet. Objectives of this article are to analyze the major opportunities arising from the integration of social networking concepts into the Internet of Things, present the major ongoing research activities, and point out the most critical technical challenges

    SIoT: Giving a Social Structure to the Internet of Things

    No full text

    The Internet of Things: A survey

    No full text
    This paper addresses the Internet of Things. Main enabling factor of this promising paradigm is the integration of several technologies and communications solutions. Identification and tracking technologies, wired and wireless sensor and actuator networks, enhanced communication protocols (shared with the Next Generation Internet), and distributed intelligence for smart objects are just the most relevant. As one can easily imagine, any serious contribution to the advance of the Internet of Things must necessarily be the result of synergetic activities conducted in different fields of knowledge, such as telecommunications, informatics, electronics and social science. In such a complex scenario, this survey is directed to those who want to approach this complex discipline and contribute to its development. Different visions of this Internet of Things paradigm are reported and enabling technologies reviewed. What emerges is that still major issues shall be faced by the research community. The most relevant among them are addressed in details

    Sociocast: A New Network Primitive for IoT

    No full text
    It is a matter of fact that social ties drive communications during most of our daily activities. This observation has inspired research activities aimed at exploiting the properties of social networks to implement novel networking paradigms, applications models, and middleware platforms. In this work, we leverage social networking technologies and concepts toward the definition of a novel network primitive for IoT. The new primitive, called Sociocast, enables trusted group-oriented communications, in-network publish/subscribe mechanisms, dynamic and selective firewalling, and flexible data casting. In this article we present an architectural solution together with the primitive syntax, show some performance results, and discuss open research issues
    corecore