254 research outputs found

    Simulating sunflower canopy temperatures to infer root-zone soil water potential

    Get PDF
    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential

    Diurnal patterns of wheat spectral reflectances and their importance in the assessment of canopy parameters from remotely sensed observations

    Get PDF
    Spectral reflectances of Produra wheat were measured at 13 different times of the day at Phoenix, Arizona, during April 1979 using a nadir-oriented hand-held 4-band radiometer which had bandpass characteristics similar to those on LANDSAT satellites. Different Sun altitude and azimuth angles caused significant diurnal changes in radiant return in both visible and near-IR regions of the spectrum and in several vegetation indices derived from them. The magnitude of these changes were related to different canopy architecture, percent cover and green leaf area conditions. Spectral measurements taken at each time period were well correlated with green leaf area index but the nature of the relationship changed significantly with time of day. Thus, a significant bias in the estimation of the green leaf area index from remotely sensed spectral data could occur if sun angles are not properly accounted for

    Hand-held radiometry: A set of notes developed for use at the Workshop of Hand-held radiometry

    Get PDF
    A set of notes was developed to aid the beginner in hand-held radiometry. The electromagnetic spectrum is reviewed, and pertinent terms are defined. View areas of multiband radiometers are developed to show the areas of coincidence of adjacent bands. The amounts of plant cover seen by radiometers having different fields of view are described. Vegetation indices are derived and discussed. Response functions of several radiometers are shown and applied to spectrometer data taken over 12 wheat plots, to provide a comparison of instruments and bands within and among instruments. The calculation of solar time is reviewed and applied to the calculation of the local time of LANDSAT satellite overpasses for any particular location in the Northern Hemisphere. The use and misuse of hand-held infrared thermometers are discussed, and a procedure for photographic determination of plant cover is described. Some suggestions are offered concerning procedures to be followed when collecting hand-held spectral and thermal data. A list of references pertinent to hand-held radiometry is included

    Airborne monitoring of crop canopy temperatures for irrigation scheduling and yield prediction

    Get PDF
    Airborne and ground measurements were made on April 1 and 29, 1976, over a USDA test site consisting mostly of wheat in various stages of water stress, but also including alfalfa and bare soil. These measurements were made to evaluate the feasibility of measuring crop temperatures from aircraft so that a parameter termed stress degree day, SDD, could be computed. Ground studies have shown that SDD is a valuable indicator of a crop's water needs, and that it can be related to irrigation scheduling and yield. The aircraft measurement program required predawn and afternoon flights coincident with minimum and maximum crop temperatures. Airborne measurements were made with an infrared line scanner and with color IR photography. The scanner data were registered, subtracted, and color-coded to yield pseudo-colored temperature-difference images. Pseudo-colored images reading directly in daily SDD increments were also produced. These maps enable a user to assess plant water status and thus determine irrigation needs and crop yield potentials

    Climate Change and Developing-Country Cities: Implications For Environmental Health and Equity

    Get PDF
    Climate change is an emerging threat to global public health. It is also highly inequitable, as the greatest risks are to the poorest populations, who have contributed least to greenhouse gas (GHG) emissions. The rapid economic development and the concurrent urbanization of poorer countries mean that developing-country cities will be both vulnerable to health hazards from climate change and, simultaneously, an increasing contributor to the problem. We review the specific health vulnerabilities of urban populations in developing countries and highlight the range of large direct health effects of energy policies that are concentrated in urban areas. Common vulnerability factors include coastal location, exposure to the urban heat-island effect, high levels of outdoor and indoor air pollution, high population density, and poor sanitation. There are clear opportunities for simultaneously improving health and cutting GHG emissions most obviously through policies related to transport systems, urban planning, building regulations and household energy supply. These influence some of the largest current global health burdens, including approximately 800,000 annual deaths from ambient urban air pollution, 1.2 million from road-traffic accidents, 1.9 million from physical inactivity, and 1.5 million per year from indoor air pollution. GHG emissions and health protection in developing-country cities are likely to become increasingly prominent in policy development. There is a need for a more active input from the health sector to ensure that development and health policies contribute to a preventive approach to local and global environmental sustainability, urban population health, and health equity

    Internet of Things for Sustainable Human Health

    Get PDF
    The sustainable health IoT has the strong potential to bring tremendous improvements in human health and well-being through sensing, and monitoring of health impacts across the whole spectrum of climate change. The sustainable health IoT enables development of a systems approach in the area of human health and ecosystem. It allows integration of broader health sub-areas in a bigger archetype for improving sustainability in health in the realm of social, economic, and environmental sectors. This integration provides a powerful health IoT framework for sustainable health and community goals in the wake of changing climate. In this chapter, a detailed description of climate-related health impacts on human health is provided. The sensing, communications, and monitoring technologies are discussed. The impact of key environmental and human health factors on the development of new IoT technologies also analyzed
    corecore