168 research outputs found

    Lithiation of InSb and Cu2_2Sb : A Theoretical Investigation

    Full text link
    In this work the mechanism of Li insertion/intercalation in the anode materials InSb and Cu2_2Sb is investigated by means of the first principles total energy calculations. The total charge densities for the lithiated products of the two compounds are presented. Based on these results the change in the bonding character on lithiation is discussed. Further, the isomer shift for InSb and Cu2_2Sb and there various lithiated products is reported. The average insertion/intercalation voltage and volume expansion for transitions from InSb to Li2_2InSb and Cu2_2Sb to Li2_2CuSb are calculated and found to be in good agreement with the experimental values. These findings help to resolve the controversy regarding the lithiation mechanism in InSb.Comment: 5 pages 3 figure

    A new computational solution to compute the uptake index from 99mTc-MDP bone scintigraphy images

    Get PDF
    The appearance of bone metastasis in patients with breast or prostate cancer makes the skeleton most affected by metastatic cancer. It is estimated that these two cancers lead in 80% of the cases to the appearance of bone metastasis, which is considered the main cause of death. 99mTc-methylene diphosphonate (99mTc-MDP) bone scintigraphy is the most commonly used radionuclide imaging technique for the detection and prognosis of bone carcinoma. With this work, it was intended to develop a new computational solution to extract from 99mTc-MDP bone scintigraphy images quantitative measurements of the affected regions in relation to the non-pathological regions. Hence, the uptake indexes computed from a new imaging exam are compared with the indexes computed from a previous exam of the same patient. Using active shape models, it is possible to segment the regions of the skeleton more prone to be affected by the bone carcinoma. On the other hand, the metastasis is segmented using the region-growing algorithm. Then, the uptake rate is calculated from the relation between the maximum intensity pixel of the metastatic region in relation to the maximum intensity pixel of the skeletal region where the metastasis was located. We evaluated the developed solution using scintigraphic images of 15 patients (7 females and 8 males) with bone carcinoma in two distinct time exams. The bone scans were obtained approximately 3 h after the injection of 740 MBq of 99mTc-MDP. The obtained indexes were compared against the evaluations in the clinical reports of the patients. It was possible to verify that the indexes obtained are according to the clinical evaluations of the 30 exams analyzed. However, there were 2 cases where the clinical evaluation was unclear as to the progression or regression of the disease, and when comparing the indexes, it is suggested the progression of the disease in one case and the regression in the other one. Based on the obtained results, it is possible to conclude that the computed indexes allow a quantitative analysis to evaluate the response to the prescribed therapy. Thus, the developed solution is promising to be used as a tool to help the technicians at the time of clinical evaluation

    SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Get PDF
    SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices

    Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material

    Get PDF
    Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs). The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    The taming of the cell: shape-memory nanopatterns direct cell orientation

    No full text
    Mitsuhiro Ebara, Koichiro Uto, Naokazu Idota, John M Hoffman, Takao AoyagiBiomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, JapanAbstract: We report here that the direction of aligned cells on nanopatterns can be tuned to a perpendicular direction without use of any biochemical reagents. This was enabled by shape-memory activation of nanopatterns that transition from a memorized temporal pattern to the original permanent pattern by heating. The thermally induced shape-memory nanopatterns were prepared by chemically crosslinking semi-crystalline poly(ε-caprolactone) (PCL) in a mold to show shape-memory effects over its melting temperature (Tm = 33°C). Permanent surface patterns were first generated by crosslinking the PCL macromonomers in a mold, and temporary surface patterns were then embossed onto the permanent patterns. The temporary surface patterns could be easily triggered to transition quickly to the permanent surface patterns by a 37°C heat treatment, while surface wettability was independent of temperature. To investigate the role of dynamic and reversible surface nanopatterns on cell alignment on the PCL films before and after a topographic transition, NIH 3T3 fibroblasts were seeded on fibronectin-coated PCL films with a temporary grooved topography (grooves with a height of 300 nm and width of 2 µm were spaced 9 µm apart). Interestingly, cells did not change their direction immediately after the surface transition. However, cell alignment was gradually lost with time, and finally cells realigned parallel to the permanent grooves that emerged. The addition of a cytoskeletal inhibitor prevented realignment. These results clearly indicate that cells can sense dynamic changes in the surrounding environments and spontaneously adapt to a new environment by remodeling their cytoskeleton. These findings will serve as the basis for new development of spatiotemporal tunable materials to direct cell fate.Keywords: shape-memory surface, poly(ε-caprolactone), nanopatterns, temperature-responsive polymers, cell orientatio

    Distribution of the Water-soluble Vitamin Content of Japanese Breast Milk

    No full text
    corecore