76 research outputs found

    Benchmark Test of Drift-kinetic and Gyrokinetic Codes through Neoclassical Transport Simulations

    Get PDF
    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic delta f Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter nu = 0.01 ~ 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field

    Parallel filtering in global gyrokinetic simulations

    Get PDF
    In this work, a Fourier solver [B.F. McMillan, S. Jolliet, A. Bottino, P. Angelino, T.M. Tran, L Villard, Comp. Phys. Commun. 181 (2010) 7151 is implemented in the global Eulerian gyrokinetic code GT5D [Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49 (2009) 0650291 and in the global Particle-In-Cell code ORB5 [S. Jolliet, A. Bottino, P. Angelino, It Hatzky. T.M. Iran, B.F. McMillan, O. Sauter, K. Appert, Y. Idomura, L Villard, Comp. Phys. Commun. 177 (2007) 4091 in order to reduce the memory of the matrix associated with the field equation. This scheme is verified with linear and nonlinear simulations of turbulence. It is demonstrated that the straight-field-line angle is the coordinate that optimizes the Fourier solver, that both linear and nonlinear turbulent states are unaffected by the parallel filtering, and that the k(parallel to) spectrum is independent of plasma size at fixed normalized poloidal wave number. (C) 2011 Elsevier Inc. All rights reserved

    A global collisionless PIC code in magnetic coordinates

    Get PDF
    A global plasma turbulence simulation code, ORB5, is presented. It solves the gyrokinetic electrostatic equations including zonal flows in axisymmetric magnetic geometry. The present version of the code assumes a Boltzmann electron response on magnetic surfaces. It uses a Particle-In-Cell (PIC), delta f scheme, 3D cubic B-splines finite elements for the field solver and several numerical noise reduction techniques. A particular feature is the use of straight-field-1 line magnetic coordinates and a field-aligned Fourier filtering technique that dramatically improves the performance of the code in terms of both the numerical noise reduction and the maximum time step allowed. Another feature is the capability to treat arbitrary axisymmetric ideal MHD equilibrium configurations. The code is heavily parallelized, with scalability demonstrated up to 4096 processors and 109 marker particles. Various numerical convergence tests are performed. The code is validated against an analytical theory of zonal flow residual, geodesic acoustic oscillations and damping, and against other codes for a selection of linear and nonlinear tests. (c) 2007 Elsevier B.V. All rights reserved
    • …
    corecore