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Abstract

A global plasma turbulence simulation code, ORB5, is presented. It solves the
gyrokinetic electrostatic equations including zonal flows in axisymmetric magnetic
geometry. The present version of the code assumes a Boltzmann electron response
on magnetic surfaces. It uses a Particle-In-Cell (PIC), δf scheme, 3D cubic B-splines
finite elements for the field solver and several numerical noise reduction techniques.
A particular feature is the use of straight-field-line magnetic coordinates and a
field-aligned Fourier filtering technique that dramatically improves the performance
of the code in terms of both the numerical noise reduction and the maximum time
step allowed. Another feature is the capability to treat arbitrary axisymmetric ideal
MHD equilibrium configurations. The code is heavily parallelized, with scalability
demonstrated up to 4096 processors and 109 marker particles. Various numerical
convergence tests are performed. The code is validated against an analytical theory
of zonal flow residual, geodesic acoustic oscillations and damping, and against other
codes for a selection of linear and nonlinear tests.
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1 Introduction

Anomalous transport is currently one of the most active fields of research in
magnetic confinement fusion. The cross-field transport measured in Toka-
mak experiments exceeds the neoclassical predictions by up to two orders of
magnitude for the low confinement regime (L-mode) [1]. Even in the high con-
finement regime (H-mode) where transport is reduced near the plasma edge,
anomalous transport still persists in the core. This phenomenon is attributed
to plasma turbulence [2], which is driven by micro-instabilities [3]. The latter
are mainly generated by free sources of energy in the plasma such as density
and temperature gradients. It is now widely believed that self-organization
of turbulence plays a crucial role. It refers to a process in which the internal
organization of a system increases automatically without being guided or man-
aged by an outside source. In magnetized plasmas, self-organization mainly
appears through two different structures: zonal flows [4] and large-scale trans-
port, such as avalanches [5] and streamers [6, 7].
In general, a full kinetic treatment of micro-instabilities is needed. In this
framework, the gyrokinetic model [8] is usually sufficient for drift wave turbu-
lence at low frequency. It removes the gyorangle dependance in the original
equations, thus reducing the phase space from 6D to 5D. Various gyroki-
netic equations can be found for example in [9–12]. Among the different
approaches used to solve the gyrokinetic equations, the Particle-In-Cell (PIC)
method [8, 13–18] is one of the most promising schemes. The distribution
function is sampled along trajectories with numerical particles (markers). The
main advantage is that the distribution function is not discretized on a 5D
grid as in Eulerian [19–21] and semi-Lagrangian [22–24] codes, the latter
being more difficult to handle numerically. Moreover, it is conceptually sim-
ple, easily generalized to multi-dimensional simulations and more adapted for
complex geometries such as stellerators [25, 26] than Eulerian codes. How-
ever, the PIC method unavoidably gives rise to statistical noise which can
lead to an unphysical behaviour in the nonlinear phase of the simulation,
but significant progresses have been made to limit this effect [27, 28]. In
addition to the solving methods, another important distinction between the
different models is the simulated domain. In local simulations, turbulence is
studied on a single magnetic surface. A less restrictive method is to simu-
late a flux-tube following a given magnetic-field line. This approach reduces
the computer ressources needed, but imposes inconsistent T and ∇T profiles
(i.e. T = const,∇T = const) and generally employs unphysical radially peri-
odic boundary conditions. The global approach is certainly the most realistic
model, because it contains the whole radial domain and therefore the effects
of profile variation.
The aim of this paper is to present the ORB5 code, originally written by
Parker [18] and further developed by Tran [13]. ORB5 is a nonlinear gyroki-
netic global code which solves the Vlasov-Poisson system in the electrostatic
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and collisionless limit, and has the unique capability of handling true MHD
equilibria [29, 30].
The paper is organized as follows. In Sec. 2, the gyrokinetic equations are
derived. Sec. 3 presents the implementation of these equations and the as-
sociated numerical algorithms. Sec. 4 shows the parallel performance of the
code. Results related to the numerical schemes and benchmarks are shown in
Sec. 5. Finally, conclusion and future works are exposed in Sec. 6.
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2 Gyrokinetic model

2.1 Definitions and normalization

The code ORB5 solves the Vlasov-Poisson system in the gyrokinetic limit
for an axisymetric toroidal plasma. Magnetic surfaces are labelled with the

poloidal flux ψ, or by the radial coordinate s =
√
ψ/ψedge =

√
ψ̃. The ge-

ometrical radial coordinate will be noted ρ and the poloidal angle θ. The
magnetic field is defined as ~B = F (ψ)∇ϕ + ∇ψ × ∇ϕ, where F (ψ) is the
poloidal current flux function. Two different kinds of magnetic equilibria are
implemented: circular concentric magnetic surfaces, referred to as ad hoc equi-
librium, and true MHD equilibria. For the latter case, ORB5 is coupled with
the CHEASE code [31], which solves the Grad-Shafranov equation with a fixed
plasma boundary. The poloidal coordinate used is either the geometrical angle
θ or the straight-field-line coordinate θ∗ defined by

θ∗ =
1

q(s)

∫ θ

0

~B · ∇ϕ
~B · ∇θ′

dθ′, (1)

where q(s) is the safety factor. In this paper, χ represents a general poloidal
coordinate. In ORB5, the options χ = θ and χ = θ∗ have been implemented.
All symbols with the subscript i will be used for ion quantities, while the
subscript e will be used for electrons. It is assumed that the plasma contains
electrons and an ion species with a mass mi and a charge qi = eZi. Four
normalization quantities are used: qi, mi, B0 and ρs = cs/Ωi, where B0 is the
magnetic field at geometrical axis, Te(s0) is the electron temperature in eV at

a given reference magnetic surface s0, and cs =
√
eTe(s0)/mi is the ion sound

speed.
The gyrokinetic equations solved in ORB5 are derived from Ref. [9] which
describe the evolution of the plasma in an inhomogeneous static equilibrium
magnetic field. Only the electrostatic component of the perturbation is con-
sidered, and magnetic perturbations are neglected.

2.2 Gyrokinetic Vlasov equation

The usual gyrokinetic ordering is assumed:

ω

Ωi

∼ k‖
k⊥

∼ eφ

Te
∼ ρL,i

Ln
∼ ρL,i
LT,i

∼ ρL,i
LT,e

∼ ǫg,

ρL,i
LB

∼ ǫB,
(2)
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where ω is the characteristic fluctuation frequency, Ωi = qiB0/mi is the cy-
clotron frequency k‖ and k⊥ are the parallel and perpendicular components of
the wave vector with respect to the magnetic field, φ is the fluctuating elec-
trostatic potential, ρL,i is the ion gyroradius, and Ln, LT,i, LT,e, LB are the
characteristic lengths associated with the density, the ion temperature, the
electron temperature and the magnetic field profiles. ǫg and ǫB are small pa-
rameters, ǫg ∼ ρ∗, ǫB ∼ ǫaǫg, with ρ∗ = ρs/a ≪ 1 and ǫa is the inverse aspect

ratio. ORB5 solves the equations of motion in a 5D phase space (~R, v‖, µ),

where ~R is the position of the guiding center, µ = v2
⊥/(2B) is the magnetic

moment, with the conservation property dµ/dt = 0, v‖ and v⊥ are the parallel
and perpendicular components of the velocity with respect to the magnetic
field. The renormalized potential Ψ(~R, v‖, µ) in Ref. [9] has been approximated
here by the gyroaveraged electrostatic potential

Ψ(~R, v‖, µ, t) ∼= 〈φ〉(~R, µ, t) =
1

2π

∫ 2π

0
φ(~x, t) δ(~R + ~ρL,i − ~x) dα, (3)

thus neglecting a term of order O(ǫ2g). Here α is the gyroangle. The gyroav-
eraged electric field is approximated by

〈 ~E〉(~R, µ, t)∼=−〈∇~xφ(~x)〉(~R, µ, t) = − 1

2π

∫ 2π

0
dα∇x̃ φ(x̃), (4)

where a term of order O(ǫgǫb) has been neglected. The polarization density
is [9]:

ni,pol =
∫




qi
miB

(
φ− 〈φ〉

)∂f
∂µ

+
qi

miΩ2
i

∇
[∫

dα
(
φ− 〈φ〉

)]
×
~B

B
· ∇f






δ(~R + ~ρL,i + ~x)B∗
‖ d~R dv‖ dµ dα, (5)

where f = f(~R, v‖, µ) is the guiding center distribution function of the ion

species, B∗
‖ = ~B∗

‖ · ~B/B, and ~B∗
‖ = ~B + miv‖/qi

(
∇×~h

)
. The second term

of Eq. (5) has been neglected, although it is of order O(ǫg): ORB5 solves
the linearized quasi-neutrality equation, so when f is replaced by the f0 in
the second term, it becomes smaller than the first one by a factor ǫg due to
the density and temperature gradients appearing in ∇f0. Sources, sinks and
collisions are neglected, so the gyrokinetic Vlasov equation is:

∂f

∂t
+
∂f

∂ ~R
· d~R

dt
+
∂f

∂v‖

dv‖
dt

= 0. (6)

The equations of motion are given by
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d~R

dt
= v‖~h+

1

ΩiB∗
‖

(

v2
‖ +

v2
⊥

2

)(
~h×∇B

)
−

v2
‖

ΩiB∗
‖

~h×
[
~h× (∇× ~B)

]

+
〈 ~E〉 × ~B

B∗
‖B

, (7)

dv‖
dt

=
1

2
v2
⊥∇ · ~h+

v2
⊥v‖

2ΩiBB
∗
‖





~h×

[
~h× (∇× ~B)

]

 · ∇B

+〈 ~E〉 ·




qi
mi

~h +
v‖
BB∗

‖

(
~h×∇B

)
+

v‖
BB∗

‖

(
~h× µ0∇p

B

)

, (8)

where ~h = ~B/B, µ0 is the permittivity of free space and ∇p = p′(ψ)∇ψ is
the pressure gradient. The second term on the right hand side of Eq. (8) is
of order O(ǫ2B), does not influence neither energy conservation (see Sec. 2.5)
nor the physical results and will be neglected in all the simulations. These
equations of motion for a particle include the parallel motion, the drifts due to
the curvature and the gradient of the magnetic field, the diamagnetic drift and
a mirror term. For ad hoc equilibria, µ0∇p/B is replaced by −~h × (∇× ~B).

Nonlinear terms are the ~E × ~B drift and the v‖ nonlinearity, which is mainly
an acceleration term due to the parallel electric field.

2.3 Background equilibrium and δf method

The δf method [27] is used, i.e. the distribution function f is split between a
time independent part f0 and a time dependent part δf :

f(~R, v‖, µ, t) = f0(~R, v‖, µ) + δf(~R, v‖, µ, t). (9)

A Maxwellian is chosen for f0, i.e.

f0(~R, v‖, µ) = n0(Υ)(2π)−3/2v−3
th,i(Υ) exp (−E/Ti(Υ)) , (10)

where E = 1/2miv
2 is the kinetic energy of a single ion, and is a constant

of the unperturbed motion, and vth,i =
√
eTi/mi is the ion thermal velocity.

Three different kinds of Maxwellian can be used, depending on the choice of
the variable Υ as either ψ, ψ0, ψ̂, where ψ0 is the canonical toroidal momentum,
ψ0 = ψ + v‖ΩiF (ψ)/B2 and ψ̂ is a function of (E, µ, ψ0) defined below. The
axisymmetry of the tokamak implies that ψ0 is a constant of the unperturbed
motion, i.e. dψ0

dt

∣∣∣
0

= 0. The quantity ψ̂ = ψ0+ψ0,corr(E, µ) is another constant
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of motion, with

ψ0,corr(E, µ) = −sign(v‖(t0))
qi
mi
R0

√
2(E − µB0)H(E − µB0), (11)

where H(x) is the Heavyside function, therefore ψ0,corr is defined only for

passing particles. ψ̂ can be seen as the closest constant of motion to ψ. In
the following, f0(ψ) is referred to as a local Maxwellian, f0(ψ0) as a canonical

Maxwellian and f0(ψ̂) as a canonical Mawellian with correction. The Vlasov

equation is then
dδf(~R,v‖,µ)

dt
= −df0(Υ,v‖,µ)

dt
which can be written

dδf(~R,v‖,µ)

dt
=

τ( ~E), with

τ( ~E) = −f0(Υ, v‖, µ)



κ(Υ)
dΥ

dt

∣∣∣∣∣
0

+ κ(Υ)
dΥ

dt

∣∣∣∣∣
1

− qi
T (Υ)

〈 ~E〉 · d~R

dt

∣∣∣∣∣∣
0



 , (12)

where κ(Υ) = d ln f0(Υ, v‖, µ)/dΥ. The subscript 0 refers to the unperturbed
orbits and the subscript 1 refers to the terms that depend on the perturbed
electric field. In most other gyrokinetic codes, with the exception of the GT3D
code [16], a local Maxwellian is chosen, i.e Υ = ψ, and the first term on the
r.h.s. of Eq. (12) is neglected. A local Maxwellian can lead to spurious zonal
flow oscillations [16], since it is not a true equilibrium distribution function, as
df0(ψ)

dt

∣∣∣
0
∝ dψ

dt

∣∣∣
0
6= 0. When using a canonical Maxwellian, the quasi-neutrality

equation is no longer satisfied as electron and ion equilibrium densities are
different. In order to enforce quasi-neutrality, a radial electric field quickly
develops and possibly suppresses instability. To eliminate this spurious field
generation, the electron equilibrium density is further integrated from the ion
distribution function after the particle loading and averaged over the poloidal
angle,

ne0(ψ) =
1

2π

∫ 2π

0

(∫
f0(ψ0, ǫ, µ)δ(~R + ~ρL,i − ~x)B∗

‖d
~R dv‖ dµ dα

)
dθ, (13)

which minimizes the difference between n0e and n0i. Note that for small ρ∗

plasmas, there is little difference between ψ and ψ0 and the local Maxwellian
becomes close to the canonical Maxwellian. Issues related to this choice are
discussed in details in Ref. [32]. When Υ = ψ̂, the approximation dψ̂

dt

∣∣∣
1
∼= dψ0

dt

∣∣∣
1

is done.
As another alternative, since f is constant along the trajectories, δf can be
simply obtained by:

δf(~R, v‖, µ, t) = f
(
~R(t0), v‖(t0), µ(t0)

)
− f0

(
Υ(t), v‖(t), µ(t0)

)
. (14)

Details of this scheme, called direct δf , are given in Refs. [33] and [32]. ORB5
can be used with the standard or the direct δf scheme.
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2.4 Quasi-neutrality equation

Using the usual quasi-neutrality constraint, the Poisson equation is ne = Zini.
The polarization density, Eq. (5), contained in ni(~x, t) is simplified by using
a long wavelength approximation (k⊥ρL,i)

2 ≪ 1. The electron density ne(~x, t)
is evaluated by assuming adiabatic (or Boltzmann) electrons along the mag-
netic field lines. After linearization of the ion polarization density the quasi-
neutrality equation becomes

ne0(ψ) +
ene0(ψ)

Te(ψ)

(
φ(~x, t) − φ̄(ψ, t)

)

= Zi〈ni0〉(~x) + Zi∇⊥ ·
(
ni0(ψ)

BΩi
∇⊥φ(~x, t)

)

+ Ziδni,

(15)

where 〈...〉 is the average over the gyroangle,

〈ni0〉(~x)=
∫
f0

(
Γ
(
ψ(~x), ǫ(v‖, µ, ~x), µ

)
, ǫ
(
v‖, µ, ~x

)
, µ
)

δ(~R + ~ρL,i − ~x)B∗
‖d
~R dv‖ dµ dα, (16)

and

δni =
∫
B∗

‖d~R dv‖ dµ dαδf(~R, v‖, µ, t)δ(~R + ~ρL,i − ~x). (17)

At this point, it is assumed that 〈ni0〉(~x) = ni0(~x) and ni0(~x) = ne0(ψ)/Zi for
a local Maxwellian only. Nevertheless, in this paper it is assumed that this
relation holds for any type of equilibrium distribution function, so ni0(~x) =
ne0(ψ)/Zi ≡ n0(ψ). The final quasi-neutrality equation is therefore:

eZin0(ψ)

Te(ψ)

(
φ(~x, t) − φ̄(ψ, t)

)
−∇⊥ ·

(
Zin0(~x)

BΩi
∇⊥φ(~x, t)

)

= Ziδni. (18)

In Eq. (18), φ̄ is the flux-surface averaged potential. This term is nonzero only
for axisymmetric perturbations: only the toroidal Fourier component n = 0
gives a contribution to this term. The n = 0, m = 0 mode is commonly called
the zonal flow.

2.5 Particle and energy conservation

Despite all the approximations made in the previous sections, a particle num-
ber and an energy invariant can be derived (see Ref. [28]). The kinetic energy
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of the plasma is

Ekin =
∫
mi

(

µB +
v2
‖

2

)

fB∗
‖ d~R dv‖ dµ dα. (19)

Its time derivative is

dEkin

dt
= qi

∫
d~R

dt
· 〈 ~E〉fB∗

‖ d~R dv‖ dµ dα. (20)

In this model, the electrostatic energy is defined as

Ef =
qi
2

∫
d~x
(
〈ni〉(~x, t) − n0(~x)

)
φ(~x, t). (21)

The energy and particle number conservation are written:

dEkin

dt
= −dEf

dt
, (22)

dNph

dt
=

d

dt

∫
fB∗

‖ d~R dv‖ dµ dα = 0. (23)
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3 Numerical implementation

This section describes the implementation of the gyrokinetic model exposed
in Sec. 2. The general scheme of the code is shown in Fig. 1.

3.1 δf discretization: the Particle-In-Cell method

The Particle-In-Cell (PIC) method [34] is commonly employed in gyrokinetic
simulations [8,16,17,28,35]. The perturbed distribution function is discretized
in the 5D phase space along trajectories with N markers (also called tracers),
carrying a weight w. In ORB5, δf is discretized as:

δf =
Nph

N

N∑

p=1

1

2πB∗
‖

wp(t)δ
(
~R− ~Rp(t)

)
δ
(
v‖ − v‖p(t)

)
δ
(
µ− µp(t0)

)
, (24)

where Nph is the number of physical particles. Each marker is characterized

by its weight wp(t) and by its location
(
~Rp(t), v‖p(t), µp(t0)

)
in phase space.

Integrating Eq. (24) over a small volume Ωp on which δf is assumed to be con-
stant, the temporal evolution of δf is obtained by solving the Vlasov equation
for each weight wp(t):

dwp(t)

dt
=

N

Nph

τ( ~E)pΩp, (25)

where τ( ~E) is given by Eq. (12), Ωp = B∗
‖ d~R dv‖ dµ dα /dN represents the

volume of a marker in phase space centered around its location ( ~Rp, v‖,p, µp)
and dN is the number of markers in an infinitesimal volume of phase space:

dN =
N

Nph
fL(~R, v‖, v⊥)J(χ, s, ϕ) ds dχ dϕ v⊥dv‖ dv⊥ dα. (26)

The loading of the markers is specified by the probability density function
fL(~R, v‖, v⊥). The conventional loading is such that markers have a probability

function p(s) = 1−fg+fg exp
[
(s−s0,L)

2/∆s2
L

]
in space, where fg ∈ [0 : 1], s0,L

and ∆sL are input parameters. The markers are uniformly loaded in (v‖, v⊥),
with a cut-off is applied at (v‖, v⊥) = κvvth,i(s), where κv is specified on input.
It has been checked that all the simulations in this paper are converged for
κv = 5. A disadvantage of this loading is that it is not specifically optimized
for δf in velocity space. In the nonlinear phase, the size of the weights may
vary significantly. During the charge assignment, noise will be produced where
large weights (in absolute value) are present, which, due to its cumulative
character, will alter the quality of the simulation. A way to overcome this
difficulty is to apply an optimized loading [28], based on the statistical method
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of importance sampling [36] of |δf |. The basic idea is to load markers with a
probability function proportional to |δf | at a time tNL in the nonlinear phase.
A first simulation is done with a uniform loading. Information about fL is
obtained by binning the markers at their initial position at a given time tNL
in the nonlinear phase. A second simulation is then performed using this new
fL(~R, v‖, v⊥), which determines initial phase space coordinates (~Rp, v‖p, µp)
and initial phase space volume Ωp of the markers. In the nonlinear phase
of this restarted simulation, the statistical variance of the weights will be
smaller, hence the numerical noise will have a lower level (see Eq. (1) of
Ref. [38]. The reason is that the optimized loading avoids the appearance of
large weights in the nonlinear phase. This technique has been successfully
applied in cylindrical [28] and Tokamak [37] geometry.
Two different ways of initializing the weights (or equivalently the perturbation
δf) have been implemented. The white noise initialization is defined by

δfp(t0) = Apf0

(
~Rp(t0), v‖p(t0), v⊥,p(t0)

)
Ωp. (27)

Ap is a pseudo-random number obtained with a Hammersley sequence, whose
maximum amplitude is given on input. This scheme has the disadvantage that
the initial perturbation is inversely proportional to the number of markers in
the simulation. The simulation takes an increasing time, roughly proportional
to the number of markers, until the physical modes emerge of the initial noise.
Instead, the idea is to build a physical initialization, called mode initialization,
independent of the number of markers:

δfp(t0) = Ωp

A0f0

(
~Rp(t0), v‖p(t0), µp(t0)

)

(m2 −m1 + 1)(n2 − n1 + 1)

∣∣∣∣∣∣

T
(
s0

)

∇T
(
s0

)

∣∣∣∣∣∣

∣∣∣∣∣∣

∇T
(
sp(t0)

)

T
(
sp(t0)

)

∣∣∣∣∣∣

×
m2∑

m=m1

n2∑

n=n1

cos
(
mχp(t0) − nϕp(t0)

)
. (28)

where m0, m1, m2, n0, n1, n2 are input parameters. This initialization will be
stronger by choosing m0 = [−nq(s0)], where [...] denotes the integer part,
as ITG modes are aligned with the field lines. It has the advantage that
the initial perturbation converges with the number of markers and the initial
phase of the simulation, until the physical modes develop, is independent of
the number of markers.

3.2 Equations of motion

Tracers can be pushed either in cylindrical coordinates (r, ϕ, z) or in mag-
netic coordinates (θ∗, s, ϕ). In order to avoid the singularity at the mag-
netic axis that would appear in dθ∗/dt, it is more adequate to use (ξ, η, ϕ) =
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(s cos θ∗, s sin θ∗, ϕ). Among the numerous advantages of using magnetic co-
ordinates, this set of coordinates avoids numerical interpolations during the
construction of the perturbed density. Depending on the computer archi-
tecture, the simulation can speed up by 40%. For both ad hoc and MHD
equilibria, equilibrium coefficients needed for the pushing are obtained with
linear interpolations from a (r, z) or a (s, θ∗) grid.
For the integration of Eqs. (7), (8) and (25), a Runge Kutta integrator of order
four is implemented in ORB5.
When a particle leaves the plasma, or equivalently when s > 1, it is reflected:
χ→ −χ. This scheme may lead to a small violation of unperturbed conserved
quantities for equilibria that are not up-down symmetric.
The particle pushing is speeded up (up to 40 %) by using a cache sorting
algorithm [39]: particles are sorted in the poloidal plane every nCS time steps,
where nCS is given on input.

3.3 Discretisation of quasi-neutrality equation

The quasi-neutrality Eq. (18) is solved with linear, quadratic or cubic B-splines
finite elements [40]. The perturbed potential is discretized as:

φ(~x, t) =
∑

µ

φµ(t)Λµ(~x), (29)

where µ stands for (j, k, l), {φµ(t)} are coefficients and {Λµ(~x)} are tensor
products of 1D B-splines of order p, Λµ(~x) = Λp

j(s)Λ
p
k(χ)Λp

l (ϕ). The B-splines
are defined on a (Ns, Nχ, Nϕ) grid. To get a linear system for {φµ(t)}, the
Galerkin method [41] is used. The system is then:

∑

µ

Aµνφµ(t) = bν(t), (30)

with:

Aµν =
∫

d~x
n0(ψ)

ZiTe(ψ)

(
Λµ(~x)Λν(~x) − Λ̄µ(s)Λ̄ν(s)

)
+
n0(ψ)

BΩi

∇⊥Λµ(~x) · ∇⊥Λν(~x),

bν(t)=
Nph

N

N∑

p=1

wp(t)

2π

∫ 2π

0
dαΛν

(
~Rp + ~ρL,i,p(α)

)
. (31)

Note that the matrix is real, symmetric and positive definite. The building of
bν(~x, t) is called the charge assignment. This projection onto the finite element
basis is the main source of numerical noise, due to the particle discretization
of δf . It becomes obvious that higher order splines are beneficial for the noise
reduction, as they have a more extended shape. The perpendicular gradients
are approximated to lie in the poloidal plane, ∇⊥

∼= ∇pol = ∇s ∂
∂s

+ ∇χ ∂
∂χ

.
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Due to the axisymmetry in the toroidal direction, the system can furthermore
be decoupled in ϕ. Applying a discrete Fourier transform on φµ and bν , and
inserting these relations in Eq. (30) yields, in Fourier space:

∑

µ

Aµνφ̂
(n)
µ (t) =

b̂(n)
ν (t)

M (n),p
, (32)

where (µ, ν) now stand for 2D indices, φ̂(n)
µ , b̂(n)

ν (t) are Fourier coefficients of

φµ and bν , and M (n),p is defined by:

Nϕ∑

l′=1

∫
dϕΛp

l′(ϕ)Λp
l (ϕ) exp

(
2πi

Nϕ
n(l′ − l)

)

= M (n),p. (33)

M (n),p can be computed analytically for any spline of order p (see Ref. [13]).
The matrix Aµν and the right hand side bν defined in Eq. (31) are modified
with the Dirichlet boundary conditions φ(s = 1, χ, ϕ, t) = 0 and the regularity
condition φ(s = 0, χ, ϕ, t) = φ(s = 0, χ = 0, ϕ, t). The matrix defined in
Eq. (31) can be decomposed as Aµν(~x) = AnoZF

µν + AZF
µν , where AZF

µν contains
the flux surface averaged terms only and AnoZF

µν contains all the other terms.
The linear system associated with AnoZF

µν can be solved with iterative solvers,
such as PETSc [42] or WSMP [43], or with a direct solver using LAPACK [44]
routines. Although faster than iterative solvers, a direct solver requires more
memory. The memory needed to store the matrix becomes rapidly prohibitive
as the grid number is increased. To reduce the memory storage, a parallel
solver using ScaLAPACK [45] routines has been implemented in ORB5, giving
a reduction factor up to Ns/8 for the memory of the matrix. Iterative solvers
are not adequate for AZF

µν because its band is full, therefore the associated
linear system is only solved with direct solvers.

3.4 Gyro-averaging

The integral over the gyration angle for both electric field and perturbed
density is computed with a Ng = min

(
32,max(4, 4ρL,i,p/ρL,i)

)
discrete sum,

where ρL,i,p = v⊥p/Ωi,p is the marker gyroradius and Ωi,p is the cyclotron
frequency of the marker. Although it has been shown that a 4-points dis-
cretization is sufficient to describe perturbations up to k⊥ρL,i ∼ 1 [35], a
gyro-adaptative method reduces noise since it acts like a Bessel filter [28].
The position (rα, zα) of the marker on the Larmor ring is assumed to be in
the poloidal plane and is simply:

rα = rGC + ρL,i,p cosα (34)

zα = zGC + ρL,i,p sinα (35)
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When orbits are evolved in magnetic coordinates, the position of a marker is
obtained by a Taylor expansion:

ξα∼= ξGC + ~ρL,i,p · ∇ξ|GC , (36)

ηα∼= ηGC + ~ρL,i,p · ∇η|GC , (37)

where:

~ρL,i,p = ρL,i,p



 ∇s
|∇s| cosα +

~B ×∇s
| ~B ×∇s|

sinα



 . (38)

This implementation has been successfully applied in [46] for the linear gy-
rokinetic code LORB5 [47].
Using Eqs. (4) and (29), the gyro-averaged electric field is given by

〈 ~E〉 = − 1

2π

∑

µ

φµ(t)
∫

dα∇Λµ

(
~R + ~ρL,i(α)

)
. (39)

To achieve the best energy conservation, it is important to employ exactly
the same gyro-averaging procedure for the charge assignment and the electric
field [28].

3.5 Fourier filter

In order to reduce the noise, we apply a Fourier filter on the discretized per-
turbed density:

Fbi,j,k =
∑

m,n

fi,m,nb̂i,m,n(t) e
imχj einϕk . (40)

A Fourier filter is of great interest since physically non relevant modes can
be removed from the simulation. The poloidal Fourier filter should be chosen
wide enough so as to include all modes relevant to the physics problem at
hand, although a formal proof of energy conservation including Fourier filters
cannot be done in toroidal geometry. One of the simplest filter, called square

filter, is obtained by suppressing modes outside a window [nmin : nmax]×[mmin :
mmax] specified on input. However, this kind of filter is inconsistent with the
gyrokinetic ordering, as it retains modes with k‖/k⊥ much bigger than ρ∗ [49].
Indeed, ITG modes tend to align with the field lines. Mathematically, it means
that these modes are such that k‖ = (q(s)r)−1

(
m + nq(s)

)
→ ρ∗, consistent

with the gyrokinetic ordering Eq. (2). So m should be near −nq(s). Toroidal-
ITG modes are composed of a superposition of a few m components around
m = −nq(s), resulting in k‖ ≈ (q(s)r)−1. In both cases, it is enough to keep
a narrow window of modes in order to describe all physically relevant modes.

15



The idea here is to define a surface-dependent filter that suppresses high k‖
modes. For each n ∈ [nmin : nmax], the poloidal modes [−nq(s)±∆m]

⋂
[mmin :

mmax], where ∆m is an input parameter, are retained. It is very useful to
use θ∗ as the poloidal coordinate: the poloidal width of the spectrum for a
toroidal mode is narrower with the straight-field-line coordinate than with
the geometrical poloidal angle θ. In addition, when θ differs significantly from
θ∗ (in case of low aspect ratio, non concentric or shaped magnetic surfaces),
the mode is generally not peaked around m = nq(s). Finally, the width of a
toroidal mode spectrum increases with the plasma size when θ is used, whereas
it is in principle independent of plasma size with θ∗. The beneficial influence
of a small ∆m will be explained in Sec. 5.

3.6 Code Parallelization

Gyrokinetic simulations are extremely CPU time and memory demanding.
Therefore, ORB5 is massively parallelized with Message Passing Interface
(MPI) [48] routines. A decomposition concept called domain cloning [50,51] is
applied: P = PCPϕ, where P is the total number of processors, Pϕ is the num-
ber of sub-domains in the ϕ direction and each of these sub-domain is cloned
PC times. After each charge assignment, the perturbed density is summed over
the clones. After each step in the particle pushing, the markers have moved
also in the ϕ direction and are therefore communicated if necessary to their
appropriate ϕ sub-domain. This parallelization scheme offers great flexibility
because it can be tuned to different types of parallel platform architectures.
The performance of this decomposition will be shown at Sec. 4.

3.7 Relations between physical and numerical parameters and ρ∗ scaling

Depending on the physical case under study, the ORB5 numerical parameters
should be set up as follows. The radial mesh resolution depends on the max-
imum ksρL,i that should be resolved, where ks is the radial component of the
wave number. With cubic B-spline finite elements there should be at least 3
points per wavelength. Thus

Ns >
3

2π
(ksρL,i)max

a

ρL,i
. (41)

Similarly, for a maximum kχρL,i that should be resolved up to the magnetic
surface smax, where kχ is the poloidal component of the wave number, the
poloidal mesh should be set to

Nχ > 3smax (kχρL,i)max

a

ρL,i
. (42)
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Since the perturbations tend to be aligned with magnetic field lines the toroidal
mesh should be chosen as

Nϕ ≈ Nχ/q(s) . (43)

The time step should satisfy the following three requirements:

ω‖∆t≪ 1, ω∗∆t≪ 1, ωExB∆t≪ 1, (44)

with ω‖ = k‖v‖, k‖ = (q(s)r)−1
(
m + nq(s)

)
, ω∗ = vth,i(d lnT/dρ)kχρL,i and

ωExB = k⊥vExB. There is a limiting value of k‖ beyond which the ITG modes
are strongly Landau damped. An estimate can be obtained from a dispersion
relation [52], and taking the limit ηi → ∞:

|klim
‖ |r = (1/2)(r/LT,i)kχρLi . (45)

The field-aligned Fourier filter of width ±∆m gives |k‖|max = ∆m/
(
rq(s)

)
. In

order to resolve the physically relevant modes up to |k‖|lim the width of the
field-aligned Fourier filter should be

|∆m| > q(s)

2

r

LT,i
kχρLi . (46)

The r.h.s of Eq. (46) is typically between 5 and 10. It is worth mentioning
that it does not scale with a/ρL,i, since the typical values of kχρL,i present in
ITG turbulence do not depend on a/ρL,i. When quasi-neutrality equation is
solved with the geometrical angle θ instead of the straight-field-line coordinate
θ∗, Eq. (46) is no longer a good estimate, because the relation |k‖|max =

∆m/
(
rq(s)

)
does not hold. Note also that ∆m should be large enough so that

the filtered perturbed density does not have discontinuities across magnetic
surfaces. Mathematically, it is expressed as ∆m > nq′(s)/Ns. Using Eqs. (41)
and (42) with (ksρL,i)max = (kχρL,i)max = smax = 1, the last condition can be
written:

∆m & 2ŝ, (47)

where ŝ is the magnetic shear. The first criterion of Eq. (44) gives

Ωi∆t≪
r

a

a

ρL,i

q(s)

|∆m| , (48)

or, if |∆m| is chosen as in Eq.(46),

Ωi∆t≪
2(a/ρL,i)(r/a)

(r/LT,i)kχρL,i
. (49)
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The second criterion gives

Ωi∆t≪
(a/ρL,i)(r/a)

(r/LT,i)kχρL,i
. (50)

The third criterion can be expressed in terms of the Mach number M =
vExB/vth,i as

Ωi∆t≪
1

M k⊥ρL,i
. (51)

For most cases of interest for ITG driven turbulence M is found to be of the
order of 10−2 and k⊥ρL,i is at maximum of order unity. Using local estimates
for the time step, it appears that ω‖ is the fastest frequency of the system with
a square filter, independently of the plasma size. With a field-aligned filter, k‖
scales with ρ∗ and so for large plasmas ωE×B becomes the fastest frequency.
The time step can be increased by a factor 10, hence the simulations are
strongly shortened. More details can be found in Ref. [49].

3.8 Density and temperature profiles

A given profile A = Ti, Te or n0 is defined by:

1

A

dA

dψ̃
=− a

LA

[

1 − cosh−2
(
s0
∆A

) ]



 cosh−2
(
s−s0
∆A

)
− cosh−2

(
s0
∆A

)



. (52)

a/LT,i, a/LT,e, a/Ln, ∆T,i, ∆T,e, ∆n and s0 are input parameters. All the
gradients are peaked at s0, therefore ITG modes should develop around that
magnetic surface. Temperature profiles are normalized by their value at s0.
The density is normalized with the volume averaged density. Fig. 2 shows a
typical profile used in ORB5.
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4 Scalability

To measure the scalability, short simulations were performed at fixed grid
size, varying the number of processors from 512 to 4096 and keeping the
number of clones fixed. For each number of processors, several simulations
with different number of markers per processor have been performed. Since
the size of the matrix is fixed, the time dedicated to the solver (backsolve and
Fourier transforms) should be proportional to the number of toroidal slices per
processor. The time dedicated for the particles (pushing + charge assignment)
is assumed to scale linearly with the number of markers per processor. Finally,
the communication time is mainly due to the ϕ-partition of the markers. It is
hard to give a simple estimate for the communication time, since it depends
on the time step, the cluster architecture, and the ion temperature. However
it represents a small fraction (maximum 10 %) of the total simulation time.
Therefore, the time per iteration is modelled as:

tit = Ks
NϕPc
P︸ ︷︷ ︸

solver

+ Km
N

P︸ ︷︷ ︸
markers

+ tcomm︸ ︷︷ ︸
communication

, (53)

where Ks and Km are constants to be determined. Fig. 3 displays the time
per iteration tit as a function of the number of markers per processor N/P .
The dependence is linear, as expected. The slope of these lines, namely Km

seems to slowly increase with P , which illustrates a slight deviation from an
ideal scaling. In fact, a super-scaling can be observed from Fig. 3: for a fixed
number of markers per processor, the time per iteration decreases when the
number of processors increases. This is because P is increased by keeping
PC fixed and so according to Eq. (53) the time per iteration dedicated to the
solver decreases. Fig. 4 shows the speedup of the code relative to P = 1024
for a fixed number of markers, which is very close to an ideal scaling. Ks and
Km have been obtained by a linear fit of tit as a function of N/P at fixed
P = 512. Therefore, the measured time per iteration can be further compared
to the fitted time tfit. The maximum value of the relative degradation due to
the increase of the number of processors is only 12 %. Effects of tcomm can
be included by fitting tit − tcomm instead of tit. In that case, the maximum
relative degradation falls down to 10 %. Globally, these results show the
excellent scaling properties of ORB5 up to 4096 processors.
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5 Simulation results

5.1 Field-aligned filter

The field-aligned filter has been tested with the following input parameters:
mi = 1, a = 40ρ∗, B0 = 1 [T ], R0 = 1 [m], R0/a = 5. The density profile is
flat, Ti = Te, R0/LT,i = 12, ∆T,i = 0.208, s0 = 0.5 and ∆t = 40 Ω−1

i . If not
specified, N = 224 ∼= 16 M markers. The initial distribution f0 is a canonical
maxwellian with correction, (see Eq. (11)). δf is obtained through the con-
ventional δf scheme and is initialized with white noise. The quasi-neutrality
equation is solved with cubic B-splines on a Ns = 128, Nθ∗ = 128, Nϕ = 64
grid with the parallel direct solver. The main parameter of the field-aligned
filter is the width ∆m. By keeping only small k‖ modes, the number of
Fourier modes kept in the filter is strongly reduced. A square filter has
Ns(2mmax + 1)(2nmax + 1) modes ∝ (ρ∗)−3 whereas a field-aligned filter has
approximatively Ns(2∆m+1)(2nmax +1) modes ∝ (ρ∗)−2. The latter reduces
the number of modes by about (ρ∗)−1. In Ref. [53], it is shown that numer-
ical noise, due to the projection of the charge density onto a finite number
of markers, mainly depends on the square root of the number of markers per
Fourier modes. In that sense, a field-aligned filter should improve the quality
of a simulation without affecting CPU time, in contrary to an increase of the
numbers of tracers.
Fig. 5 displays the volume-averaged radial heat flux Q, defined by

Q =
1

V

N∑

p=1

wp
1

2
mv2

p

〈 ~E〉 × ~B

B∗
‖B

· ∇ψ
|∇ψ|

∣∣∣∣∣∣
~Rp,v‖p,µp

, (54)

where V is the volume of the torus, for field-aligned and square simulations.
The simulation starts with the linear phase, in which the perturbation grows
exponentially. Then nonlinear effects become important and saturation oc-
curs. Since the gyrokinetic model applied in ORB5 contains no sources and
no dissipation term, profiles are free to evolve. Therefore all the simulations
presented in this paper exhibit profile relaxation. A transient phase consist-
ing of avalanches and bursts occurs, while the turbulence further decays and
finally the system evolves towards a quasi-steady state in which the gradients
are totally relaxed and there is no perpendicular transport. In Fig. 5, for
the simulation with the square filter, a numerical heating develops in the late
nonlinear phase. This kind of phenomenon is typical when too few markers
are used. A good indicator of the quality of a simulation is the energy con-
servation described in Sec. 2.5. Fig. 6 shows the relative energy conservation
∆E/E(t0), where ∆E = Ekin(t) + Ef (t) − Ekin(t0) − Ef (t0) for simulations
with square and field-aligned filters. In a noise-free simulation, or equivalently
in the limit of an infinite number of markers and an infinitely small time step,
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∆E/Ef should be zero. By looking simultaneously at Figs. 5 and 6, one sees
that the energy conservation for the square filter simulation starts to degrade
after the top of the overshoot, when nonlinear effects become important. Dur-
ing the burst phase (from t = 0.8 · 104 Ω−1

i to t = 3 · 104 Ω−1
i ), the energy

deviation increases and reaches 1% of the total plasma energy, which is an
unacceptable value. From t = 3 · 104 Ω−1

i to the end of the simulation, the
system should reach a quasi-steady state but both the heat flux and the energy
deviation continue to grow: the simulation would explode if it was continued.
On the other hand, a gain of 2 orders of magnitude in the relative energy
conservation is obtained as the filter goes from square to field-aligned: in this
case, the relative energy conservation does not exceed 10−4. However, the
energy deviation is of the order of the field energy of the system so a good
simulation in terms of energy conservation should have |∆E(t)| < ǫEEf (t) in
the nonlinear phase, with ǫE ≪ 1. Simulations presented in this section have
a large ρ∗ which implies a very fast relaxation. It is indeed difficult to obtain
good energy conservation for these parameters. Simulations of realistic sized
plasmas will be shown at Sec. 5.4.
The origin of the unphysical behaviour observed on Fig. 5 can be observed on
Fig. 7: the energy of all toroidal modes is growing in time. However, for the
field-aligned filter, the energy of n 6= 0 modes is constant for late times (see
Fig. 8). On Fig. 9, the radially averaged energy spectrum of the n = 6 mode
in the poloidal space, normalized to its maximum m component, is shown at
different times for a square filter simulation. In the linear phase, the mode is
peaked near m = −12 = −nq(s0) as n = 6 and q(s0) = 2. After the satu-
ration, the peak energy becomes smaller but the spectrum broadens: it is no
longer peaked and m components which are far away from nq(s0) contain a
very significant part of the total toroidal mode energy. This causes the field
energy of all n 6= 0 modes to grow in time: it is a clear evidence that numeri-
cal noise is created because of high k‖ modes. The bad quality of the square
filter can also be observed in Fig. 10 (left), which shows the electric potential
on a magnetic surface. The resulting structure is clearly a superposition of
high k‖ modes, whereas the field-aligned (right) filter naturally preserves the
field-aligned structure of ITG modes.
These results show that a field-aligned filter instead of a square filter must
be employed in ORB5, but it is still crucial to show how to fix the width
∆m of the field-aligned filter, and more important to show that this filter will
contain all the relevant modes of the system. As the field-aligned filter acts
locally on a magnetic surface, a look on the local poloidal energy spectrum is
necessary. It must be checked that no relevant poloidal harmonics is locally
removed from the simulation: a proper determination of ∆m is a crucial step.
A too small value of ∆m will obviously cut some relevant physics, whereas a
too large ∆m quickly introduces additional numerical noise. A necessary but
not sufficient condition to fix ∆m is to converge the growth rate of toroidal
modes in the linear phase. Fig. 11 shows the evolution of the the field energy
of the mode n = 6 for different values of ∆m and a square filter simulation.
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Small ∆m cases yield lower growth rates and linear convergence is reached
with ∆m = 5. A careful look at the local energy spectrum during the non-
linear phase is still needed, in order to account for a possible broadening of
the spectrum. The problem is that for late times, numerical noise also grows
inside the field-aligned filter and it becomes hard to separate the physical
signal from the noise. The idea to overcome this difficulty is to identify the
noisy components of the local energy spectrum by choosing a larger ∆m and
by varying the number of markers. Fig. 12 shows the local energy spectrum,
averaged between t = 1.5 ·104 Ω−1

i and t = 2.4 ·104 Ω−1
i , of the mode n = 6 for

2 simulations with ∆m = 15 but with 16 M and 67 M markers. In both cases,
2 noise plateaux are visible near the edges of the filter, where high k‖ modes
are present. The plateau corresponding to the 67 M markers case is lower but
the central parts of both spectrum are very similar. Therefore, from Fig. 12
one can conclude that ∆m = 9 is a reasonable value. Fig. 13 shows that for
a sufficiently high number of markers a field-aligned filter with ∆m = 9 will
contain all the locally relevant poloidal modes. The same conclusion can be
drawn from Fig. 14 for the global energy spectrum. Note that it has also been
checked that changing the averaging times of the spectrum does not modify
this conclusion. Finally, Fig. 15 shows the radial heat flux as a function of ∆m
for simulations with constant noise, in the sense that the number of markers
per Fourier mode is kept constant [38]. One sees that ∆m = 9 is a reasonable
value and that using a large ∆m does not modify the final state of the system
but requires a higher number of markers.
To summarize, smart Fourier filtering is a powerful numerical scheme to im-
prove the quality of a PIC simulation: by relaxing the time step criterion and
by decreasing the number of Fourier modes in the simulations, CPU time is
reduced by 2 orders of magnitude. In addition, the field-aligned filter should
even be more efficient in the limit of small ρ∗ plasmas relative to the square
filter. Its width ∆m is set through the procedure applicable to any set of
physical parameters described above.

5.2 Convergence with number of markers

In collisionless gyrokinetic simulations, convergence is a subtle notion. For
PIC simulations, not only the time step and the grid resolution need to be
carefully chosen, but the number of markers plays a crucial role as well. In-
deed, numerical noise inherent to the PIC method may determine the level of
transport in ETG simulations [54]. In ITG PIC simulations, due to the strong
influence of the zonal flow, the situation is different, however the question of
the required number of markers for convergence still remains. By measuring
the level of numerical noise in ETG simulations, it has been established that
the number of markers required is linked to the number of Fourier modes in the
simulation [53]. A study of numerical noise in ITG simulations is beyond the
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scope of this paper. Here, the question of convergence is approached by means
of physics diagnostics. Fig. 16 shows the evolution of the volume averaged heat
flux for different numbers of markers and the white noise initialization. The
overshoot is shifted in time, as the initial level of the perturbation is inversely
proportional to

√
N . The sole Fig. 16 is not sufficient to say if a reasonable

convergence is reached or not. This difficulty can be overcome by using the
mode initialization with a single mode (m0, n0) (see Sec. 3.1). Fig. 17 shows
again Q for a marker scan performed with the mode initialization. As the
number of tracers is increased, the different curves look more and more alike
during the whole simulation and the top of the overshoot occurs always at the
same time and converges to the same level. Fig. 18 shows the volume averaged
heat flux Q, time-averaged between t = 4 · 104 and t = 5 · 104 Ω−1

i , i.e. when
the system has reached a quasi steady-state, for the 2 different initializations.
For the white noise initialization, it is harder to say for which number of mark-
ers the simulation is converged. This is because the system relaxes differently
when N is increased, which implies different series of bursts. When the mode
initialization is used, the convergence curve is smoother because the different
simulations have in this case a more similar nature, and the error bars repre-
senting the standard deviation over the averaging times tend to decrease as
N is increased, which is not the case for the white noise initialization.
In addition, note that these 2 initializations give quite different overshoots
and therefore quite different profile relaxations: for the mode initialization, a
single toroidal mode strongly dominates since the beginning of the simulation,
whereas all toroidal modes have approximatively the same initial energy when
the white noise initialization is employed. In this context, a multiple mode
initialization would be more appropriate, but in principle the quasi-stationary
state of a simulation should not depend on the initialization. The important
point is that by initializing the system independently of the number of mark-
ers, the notion of convergence with respect to the number of markers becomes
easier to handle.

5.3 The Rosenbluth-Hinton test

The test consists in comparing the numerical calculation of the time evolu-
tion of the axisymmetric potential with the analytical result, valid for circular
magnetic surfaces in the limit of large aspect ratio, obtained by Hinton and
Rosenbluth [55]. The gyrokinetic Vlasov equation for the zonal flow compo-
nent, i.e. n = m = 0, is analytically solved and the axisymmetric component
of an electrostatic perturbation is found to linearly damp and a residual flow
level is found. Therefore, the E ×B velocity (v ~E× ~B, normalized to the initial
value v ~E× ~B (0)), generated by a pure axisymmetric density perturbation, is
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expected to behave as:

v ~E× ~B

v ~E× ~B (0)
= (1 − AR0

) e−γGt cos (ωGt) + AR0
(55)

where AR0
is the residual, at the radial position ρ:

AR0
=

1
(
1 + 1.6q(s)2 (ρ/R0)

−1/2
) (56)

and ωG, γG are respectively the frequency and the decaying rate of the velocity
perturbation [56]:

ωG =

(

1 +
1

2q(s)2

)1/2 √
2vth,i

R0
(57)

γG = ωG exp
(
− q(s)2 − 1

2

)
(58)

An underestimate or overestimate of the residual zonal flow would lead to an
incorrect prediction of the radial transport. Therefore a numerical code must
provide the correct residual AR0

in order to produce reliable physical results.
The zonal flow damping test has been performed in linear mode, which
means that nonlinear terms in particle trajectory equations have been sup-
pressed. In order to reproduce the results of Hinton and Rosenbluth, we
solve only for a radial electrostatic potential, by initializing a radial perturbed
density δni(s, θ, φ) = δni(s) and by filtering density such that only modes
n = 0, m ∈ [−5 : 5] are kept. GAMS will be created through the poloidal

dependence of the ~E × ~B velocity and, in addition, through the poloidal cou-
pling generated by the magnetic field in the quasi-neutrality equation. Input
parameters are mi = 1, a = 40ρ∗, B0 = 1 [T ], R0 = 5 [m], R0/a = 10. The den-
sity and temperature profiles are flat, Ti = Te. The safety profile is monotonic
and two different magnetic surfaces have been studied, s0 = 0.5, q(s0) = 1.15
and s0 = 0.7, q(s0) = 1.33. The grid is Ns = 64, Nχ = 64, Nϕ = 64,
the number of markers is N = 16 M and the time step is ∆t = 50 Ω−1

i .
The initial condition has been prepared in order to obtain an axisymmetric
ion density perturbation. The results must not depend on the initial condi-
tions, therefore two different perturbations of the ion density have been tested,
δni(s) ∼= δni,0 cos (πs) and δni(s) ∼= δni,0 sin (πs), where δni,0 is chosen so that〈
v ~E× ~B

〉

s
(t = 0) = 0.07 vth,i. The results of the ORB5 simulations are plotted

in Figs. 19 and 20. In these figures, the E × B velocity normalized at the
initial value v ~E× ~B/v ~E× ~B (0) is plotted as a function of time. As a reference,
the residual evaluated from Eq. (56) and the exponential decay predicted by
Eq. (55) are also plotted. In all cases the results are in good agreement with
the residual predicted by Rosenbluth-Hinton theory. Table 1 gives a summary
of the frequencies ωG and decaying rates γG from the simulations, compared to
the values predicted by the theory. We find an overall good agreement between
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numerical results and theory predicted values. Finally, note that the inclu-
sion of Finite-Orbit-Width effects (see Eq. (2.10) of [57]) would increase the
theoretical damping rate by only 8% for these simulations and are therefore
neglected.

5.4 CYCLONE benchmark

In Ref. [59], several fluid, gyrofluid and gyrokinetic codes are compared for
the so called CYCLONE test case, which represents local parameters from an
ITER-relevant DIII-D H-mode shot [58]. The physical parameters used here
are ρ∗ = 1/175, a = 0.48 [m], B0 = 1.91 [T ], R0 = 1.32 [m], s0 = 0.624 (corre-
sponds to ρ0 = 0.5a), q(s0) = 1.4, Ti = Te, R0/LT,i = 6.9, ηi = Ln/LT,i = 3.12,
ŝ = 0.78, ∆T,i = 0.3. The value of ρ∗ has been decreased by increasing
the electronic temperature Te(s0) to 2.52 keV , to avoid a too fast relaxation
and to approach the flux-tube limit ρ∗ → 0 without going beyond the avail-
able computational resources. The numerical parameters are the following:
N = 226 ∼= 83 M markers, ∆t = 40 Ω−1

i . The quasi-neutrality equation is
solved with cubic B-splines on a Ns = 128, Nχ = 448, Nϕ = 320 grid and a
field-aligned filter with ∆m = 5, is applied. Benchmarking ORB5 for these
parameters is crucial in order to have confidence in the code.
A first simple test is presented on Fig. 21, where the growth rates obtained
with the ORB5 code run in the linear mode are compared with GT3D [16]. ρ∗

has been changed to 1/140, a local maxwellian and the exact same equilibrium
profiles have been employed in an effort to have similar parameters between
the two codes, which show excellent agreement.
The numerical quality of CYCLONE nonlinear simulation is shown on Fig. 22
through ǫE(t) = ∆E(t)/Ef (t) which has a meaning only in the nonlinear
phase. For this CYCLONE simulation, energy is conserved up to very long
times as |ǫE| < 0.3 up to t = 5 · 104 Ω−1

i , a time at which the temperature
profile is relaxed (see Fig. 23). This is a remarkable value for a global PIC
code. This energy deviation represents 10−5 of the total initial energy of the
system. As the quasi-equilibrium state establishes, numerical noise grows and
slowly leads to the loss of energy conservation. However, for late times the
system is close to marginal stability because of profile relaxation so the state
of the system will not provide any new physical information. Hence it is use-
less to continue a PIC simulation up to very long times without sources and
sinks. The situation could be different if collisional sources were added to the
simulation.
Nonlinear benchmark is usually performed by plotting the ion diffusivity de-
fined by χi ≡ −Q/(ni∇Ti) versus R0/LT,i. Note that no assumption is done
on Q, ni and ∇Ti: these profiles are reconstructed with appropriate moments
of the Vlasov equation and then smoothed using splines with tension interpo-
lation [60]. In [59], Dimits proposed a fit to express χi as a function of R0/LT,i
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when the system has reached (quasi-)steady state:

χi
χDimits

∼= 15.4
(
1 − 6

LT,i
R0

)
, (59)

with χDimits = χGBa/Ln where χGB = (ρ∗)2 cs/a is the gyro-Bohm transport
coefficient [61]. There are two difficulties in benchmarking ORB5 against
the Dimits fit, which has been obtained with a flux-tube code. First, spatial
averaging must be applied since ORB5 is a global code. Second, the tempera-
ture profile and consequently R0/LT,i are not frozen as in flux-tube codes and
relaxes during the simulation. It is therefore better to characterize the radial
transport by a cloud of points (χi, R0/LT,i) representing the time evolution
of space averaged values rather than with a single point. Such a procedure
has been applied in Ref. [62]. ORB5 results are displayed in Fig. 24. At the
beginning of the simulation, the radial transport is null and the logarithmic
gradient variation is very weak. Then the turbulence establishes, leading to
profile relaxation. Finally, the system is in quasi-equilibrium state, meaning
that the ion diffusivity decreases to 0 and the logarithmic gradient is close
to marginal stability. The cloud of points taken from the relaxation phase
is well located near the Dimits fit. The dispersion is more important for
small averaging widths ∆s. This quantity should be large enough to average
bursts, but a too large value would move the temperature gradient too
far away from the local value. Remark on Fig. 23 how fast the profile
relaxes to a quasi-equilibrium state. A way to prevent this phenomenon
would be to decrease ρ∗, thus reducing global effects. Unfortunately simula-
tions at lower ρ∗ were not possible because of the limited computational power.
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6 Conclusion

The global collisionless PIC code ORB5 is a powerful tool for micro-
instabilities studies. It relies on a gyrokinetic model which conserves energy
and particle number, providing useful checks of the numerical solution at each
time step. Based on the δf method, this code uses true equilibrium functions
to prevent spurious zonal flows. Several noise reduction techniques are im-
plemented, such as adaptative gyro-averaging, optimized loading and Fourier
filtering. In this paper, it is shown that simulations based on field-aligned
Fourier filtering combined with the use of straight-field line coordinates have
lead to a speedup of 2 orders of magnitude. More precisely, the time step is
relaxed by removing the high k‖ modes from the turbulence spectrum, which
are anyhow inconsistent with the gyrokinetic ordering, and the number of
markers needed in the simulation is strongly reduced because the simulation
contains much less Fourier modes. By using a straight-field-line poloidal
coordinate instead of the poloidal geometrical angle, the required width of
the field-aligned filter is minimal and most importantly becomes independent
of the plasma size. The latter remark is of considerable interest as future
tokamaks such as ITER will have extremely small ρ∗. Magnetic coordinates
and the field-aligned filter are therefore important steps towards the simula-
tion of realistic devices. ORB5 also differs from other gyrokinetic codes as
it evolves particle orbits in magnetic coordinates, therefore avoiding costly
interpolations during charge assignment. ORB5 shows excellent scalability
properties: a proper parallelization is crucial with the development of large
scale computers. The question of convergence with the number of markers has
been studied by applying a physical initialization of the perturbation instead
of random noise. Finally, the code has been successfully benchmarked against
other gyrokinetic codes. The next step will be the implementation of several
relevant effects missing in the actual model, such as kinetic electron dynamics,
collisions, impurities, electromagnetic effects, sources and sinks, in order
to reduce the gap between experimental and theoretical transport predictions.
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POISSON SOLVER

• direct

• parallel

• preconditionned conjugate gradient

COMPUTATION OF GYROAVERAGED ELECTRIC FIELD

• Drift-kinetic

• Ng points gyro-averaging

• gyro-adaptative scheme

PARTICLE PUSHING

• 4th order Runge-Kutta

• Cache sorting

MARKERS BOUNDARY CONDITION

δf COMPUTATION:

• Standard δf method

• Direct δf method

INPUT: PARTICLE LOADING

• UNIFORM

• SPECIFIED

• OPTIMIZED

INPUT: EQUILIBRIUM

• MHD (from CHEASE code)

• AD HOC

Initial distribution function:

• LOCAL Maxwellian

• CANONICAL Maxwellian (+ electron density 

integration)

Coordinate system:

• TOROIDAL coordinates (s,θ,ϕ)

• MAGNETIC FIELD LINE coordinates (s,θ
*
,ϕ)

CHARGE ASSIGNEMENT:

• SQUARE filter

• DIAGONAL filter

INPUT: δf INITIALIZATION

• white noise initialization

• mode initialization

Figure 1. ORB5 scheme.
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Figure 2. Logarithmic gradient (top) and profile (bottom) used in ORB5.

0 1 2 3

10
5

0

20

40

60

80

N/P

t it

P=512

P=1024

P=2048

P=4096

Figure 3. Time per iteration as a function of N/P .

29



0 1000 2000 3000 4000 5000
0

1

2

3

4

P

R
el

at
iv

e 
sp

ee
du

p 
to

 P
=

10
24

Figure 4. Speedup (relative to P=1024) as a function of P for a fixed number of
markers (black, crosses) compared to an ideal scaling (red) .
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Figure 5. Volume averaged radial heat flux for a square filter simulation (black,
solid) and a field-aligned simulation (red, dashed) with ∆m = 7, keeping all other
physical and numerical parameters fixed.
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Figure 10. Perturbed electric potential along s0 = 0.5 at t = 5 · 104 Ω−1
i in the

(θ∗, ϕ) plane for a square filter (left) and a diagonal filter with ∆m = 4 (right). All
other physical and numerical parameters are fixed.
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Figure 11. Field energy of the n = 6 mode for a field-aligned filter with different
values of ∆m and a square filter.
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Figure 12. Local poloidal spectrum of energy for toroidal mode n = 6 at
s = s0 = 0.5, normalized to the largest component, for a simulation with
16M markers (black, crosses) and 67M markers (red, circles). Both simulations
have a field-aligned filter with ∆m = 15. The spectrum is averaged between
t = 1.5 ·104 Ω−1

i and t = 2.4 ·104 Ω−1
i . The vertical dashed lines show −nq(s0)±15.
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Figure 13. Local poloidal spectrum of energy for toroidal mode n = 6 at
s = s0 = 0.5, normalized to the largest component, for a simulation with 16M
markers (left, crosses) and 67M markers (red, circles). Both simulations have a
field-aligned filter with ∆m = 9. The spectrum is averaged between t = 1.5·104 Ω−1

i

and t = 2.4 · 104 Ω−1
i . The vertical dashed lines show −nq(s0) ± 9.
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Figure 14. Global poloidal spectrum of energy for toroidal mode n = 6, normalized
to the largest component, for a simulation with 67M markers. and a field-aligned
filter with ∆m = 9. The spectrum is averaged between t = 1.5 · 104 Ω−1

i and
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i . The vertical dashed lines show −nqaxis + ∆m and −nqedge −∆m.
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field-aligned filter and a single mode initialization.

36



0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

−6

N/10
6

<
Q

>
/(

n
ic

s
T

e
(s

0
))

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

−6

N/10
6

<
Q

>
/(

n
ic

s
T

e
(s

0
))

Figure 18. Radial heat flux as a function of the number of markers for the mode
initialization (left) and for the white initialization (right). The heat flux is averaged
between t = 4 · 104 and t = 5 · 105Ω−1

i . Error bars represent the standard deviation.
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Figure 19. ~E × ~B velocity at s0 = 0.5 (left) and s0 = 0.7 (right) as a function
of time. The solid line is the result of the ORB5 simulation in linear mode, with
cos (πs) perturbation. The dotted line is the residual and the dashed line is the
exponential decay from Rosenbluth-Hinton theory.
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Figure 20. ~E × ~B velocity at s0 = 0.5 (left) and s0 = 0.7 (right) as a function
of time. The solid line is the result of the ORB5 simulation in linear mode, with
sin (πs) perturbation. The dotted line is the residual and the dashed line is the
exponential decay from Rosenbluth-Hinton theory.
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pert s0 ωG (Eq. (57)) ωG (ORB5) γG (Eq. (58)) γG (ORB5)

cos 0.5 0.0059 0.0062 ± 0.0002 −0.0009 −0.0009 ± 0.0001

cos 0.7 0.0057 0.0058 ± 0.0002 −0.0006 −0.0007 ± 0.0001

sin 0.5 0.0059 0.0062 ± 0.0002 −0.0009 −0.0008 ± 0.0001

sin 0.7 0.0057 0.0058 ± 0.0002 −0.0006 −0.0006 ± 0.0001

Table 1
Comparison between analytical and numerical values for ωG and γG.
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