4 research outputs found

    Semiconducting Electronic Structure of the Ferromagnetic Spinel HgCr2Se4\mathbf{Hg}\mathbf{Cr}_2\mathbf{Se}_4 Revealed by Soft-X-Ray Angle-Resolved Photoemission Spectroscopy

    Full text link
    We study the electronic structure of the ferromagnetic spinel HgCr2Se4\mathrm{Hg}\mathrm{Cr}_2\mathrm{Se}_4 by soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) and first-principles calculations. While a theoretical study has predicted that this material is a magnetic Weyl semimetal, SX-ARPES measurements give direct evidence for a semiconducting state in the ferromagnetic phase. Band calculations based on the density functional theory with hybrid functionals reproduce the experimentally determined band gap value, and the calculated band dispersion matches well with ARPES experiments. We conclude that the theoretical prediction of a Weyl semimetal state in HgCr2Se4\mathrm{Hg}\mathrm{Cr}_2\mathrm{Se}_4 underestimates the band gap, and this material is a ferromagnetic semiconductor.Comment: 6+13 pages, 4+13 figure

    Single-Crystal Pentacene Valence-Band Dispersion and Its Temperature Dependence

    No full text
    The electronic structures of the highest occupied molecular orbital (HOMO) or the HOMO-derived valence bands dominate the transport nature of positive charge carriers (holes) in organic semiconductors. In the present study, the valence-band structures of single-crystal pentacene and the temperature dependence of their energy–momentum dispersion relations are successfully demonstrated using angle-resolved ultraviolet photoelectron spectroscopy (ARUPS). For the shallowest valence band, the intermolecular transfer integral and effective mass of the holes are evaluated as 43.1 meV and 3.43 times the electron rest mass, respectively, at room temperature along the crystallographic direction for which the widest energy dispersion is expected. The temperature dependence of the ARUPS results reveals that the transfer integral values (hole effective mass) are enhanced (reduced) by ∼20% on cooling the sample to 110 K

    Large anomalous Hall effect induced by weak ferromagnetism in the noncentrosymmetric antiferromagnet CoNb3 S6

    No full text
    © 2022 American Physical Society.We study the mechanism of the exceptionally large anomalous Hall effect (AHE) in the noncentrosymmetric antiferromagnet CoNb3S6 by angle-resolved photoemission spectroscopy (ARPES) and magnetotransport measurements. From ARPES measurements of CoNb3S6 and its family compounds (FeNb3S6 and NiNb3S6), we find a band dispersion unique to the Co intercalation existing near the Fermi level. We further demonstrate that a slight deficiency of sulfur in CoNb3S6 eliminates the ferromagnetism and the AHE simultaneously while hardly changing the band structure, indicating that the weak ferromagnetism is responsible for the emergence of the large AHE. Based on our results, we propose Weyl points near the Fermi level to cause the large AHE.11Nsciescopu
    corecore