3 research outputs found

    Structural Origin of Recovered Ferroelectricity in BaTiO3_3 Nanoparticles

    Full text link
    Nanoscale BaTiO3_3 particles (~10 nm) prepared by ball-milling a mixture of oleic acid and heptane have been reported to have an electric polarization several times larger than that for bulk BaTiO3_3. In this work, detailed local, intermediate, and long-range structural studies are combined with spectroscopic measurements to develop a model structure of these materials. The X-ray spectroscopic measurements reveal large Ti off-centering as the key factor producing the large spontaneous polarization in the nanoparticles. Temperature-dependent lattice parameter changes reveal the sharpening of the structural phase transitions in these BaTiO3_3 nanoparticles compared to the pure nanoparticle systems. Sharp crystalline-type peaks in the barium oleate Raman spectra suggest that this component in the composite core-shell matrix, a product of mechanochemical synthesis, stabilizes an enhanced polar structural phase of the BaTiO3_3 core nanoparticles.Comment: 5 figures in main text. 1 table and 3 figures in supplementary documen
    corecore