181 research outputs found

    On Random Walks with a General Moving Barrier

    Full text link
    Random walks with a general, nonlinear barrier have found recent applications ranging from reionization topology to refinements in the excursion set theory of halos. Here, we derive the first-crossing distribution of random walks with a moving barrier of an arbitrary shape. Such a distribution is shown to satisfy an integral equation that can be solved by a simple matrix inversion, without the need for Monte Carlo simulations, making this useful for exploring a large parameter space. We discuss examples in which common analytic approximations fail, a failure which can be remedied using the method described here.Comment: 6 pages, 7 figures, submitted to Ap

    Solar-Like Cycle in Asymptotic Giant Branch Stars

    Get PDF
    I propose that the mechanism behind the formation of concentric semi-periodic shells found in several planetary nebulae (PNs) and proto-PNs, and around one asymptotic giant branch (AGB) star, is a solar-like magnetic activity cycle in the progenitor AGB stars. The time intervals between consecutive ejection events is about 200-1,000 years, which is assumed to be the cycle period (the full magnetic cycle can be twice as long, as is the 22-year period in the sun). The magnetic field has no dynamical effects; it regulates the mass loss rate by the formation of magnetic cool spots. The enhanced magnetic activity at the cycle maximum results in more magnetic cool spots, which facilitate the formation of dust, hence increasing the mass loss rate. The strong magnetic activity implies that the AGB star is spun up by a companion, via a tidal or common envelope interaction. The strong interaction with a stellar companion explains the observations that the concentric semi-periodic shells are found mainly in bipolar PNs.Comment: 10 pages, submitted to Ap

    3D Radiative Transfer in η\eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    Get PDF
    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in η\eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in η\eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for η\eta Car.Comment: 18 pages, 11 figures, accepted for publication in MNRA

    A G1-like globular cluster in NGC 1023

    Full text link
    The structure of a very bright (MV = -10.9) globular cluster in NGC 1023 is analyzed on two sets of images taken with the Hubble Space Telescope. From careful modeling of King profile fits to the cluster image, a core radius of 0.55+/-0.1 pc, effective radius 3.7+/-0.3 pc and a central V-band surface brightness of 12.9+/-0.5 mag / square arcsec are derived. This makes the cluster much more compact than Omega Cen, but very similar to the brightest globular cluster in M31, G1 = Mayall II. The cluster in NGC 1023 appears to be very highly flattened with an ellipticity of about 0.37, even higher than for Omega Cen and G1, and similar to the most flattened clusters in the Large Magellanic Cloud.Comment: 14 pages, 3 figures, 1 table. Accepted for AJ, Oct 200

    ZOBOV: a parameter-free void-finding algorithm

    Full text link
    ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the ZOBOV algorithm, and the results from its application to the dark-matter particles in a region of the Millennium Simulation. Additionally, the paper points out an interesting high-density peak in the probability distribution of dark-matter particle densities.Comment: 10 pages, 8 figures, MNRAS, accepted. Added explanatory figures, and better edge-detection methods. ZOBOV code available at http://www.ifa.hawaii.edu/~neyrinck/vobo

    Numerical Modeling of Eta Carinae Bipolar Outflows

    Full text link
    In this paper, we present two-dimensional gas dynamic simulations of the formation and evolution of the eta-Car bipolar outflows. Adopting the interacting nonspherical winds model, we have carried out high-resolution numerical simulations, which include explicitly computed time-dependent radiative cooling, for different possible scenarios of the colliding winds. In our simulations, we consider different degrees of non-spherical symmetry for the pre-outburst wind and the great eruption of the 1840s presented by the eta-Car wind. From these models, we obtain important differences in the shape and kinematical properties of the Homunculus structure. In particular, we find an appropriate combination of the wind parameters (that control the degree of non-spherical symmetry) and obtain numerical experiments that best match both the observed morphology and the expansion velocity of the eta-Car bipolar shell. In addition, our numerical simulations show the formation of a bipolar nebula embedded within the Homunculus (the little Homunculus) developed from a secondary eruptive event suffered by the star in the 1890s, and also the development of tenuous, high velocity ejections in the equatorial region that result from the impact of the eruptive wind of the 1840s with the pre-outburst wind and that could explain some of the high speed features observed in the equatorial ejecta. The models were, however, unable to produce equatorial ejections associated to the second eruptive event.Comment: 33 pages, 9 figures, accepted by the Astrophysical Journa

    Physical Structure of Planetary Nebulae. I. The Owl Nebula

    Full text link
    The Owl Nebula is a triple-shell planetary nebula with the outermost shell being a faint bow-shaped halo. We have obtained deep narrow-band images and high-dispersion echelle spectra in the H-alpha, [O III], and [N II] emission lines to determine the physical structure of each shell in the nebula. These spatio-kinematic data allow us to rule out hydrodynamic models that can reproduce only the nebular morphology. Our analysis shows that the inner shell of the main nebula is slightly elongated with a bipolar cavity along its major axis, the outer nebula is a filled envelope co-expanding with the inner shell at 40 km/s, and the halo has been braked by the interstellar medium as the Owl Nebula moves through it. To explain the morphology and kinematics of the Owl Nebula, we suggest the following scenario for its formation and evolution. The early mass loss at the TP-AGB phase forms the halo, and the superwind at the end of the AGB phase forms the main nebula. The subsequent fast stellar wind compressed the superwind to form the inner shell and excavated an elongated cavity at the center, but has ceased in the past. At the current old age, the inner shell is backfilling the central cavity.Comment: 10 pages, 6 figures, 1 table, to appear in the Astronomical Journa

    Collimated Outflow Formation via Binary Stars. 3-D Simulations of AGB Wind and Disk Wind Interactions

    Full text link
    We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch(AGB) star and a jet blown by an orbiting companion. The jet or "Collimated Fast Wind" is assumed to originate from an accretion disk which forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet a more dis-ordered outflow outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime the jet dominates and will drive a highly collimated narrow waisted outflow. We compare our results with scenarios described by Soker & Rappaport (2000) and extrapolate the structures observed in PNe and Symbiotic stars.Comment: 22 pages, 8 figures, submitted to Ap

    Cosmic Voids: structure, dynamics and galaxies

    Get PDF
    In this review we discuss several aspects of Cosmic Voids. Voids are a major component of the large scale distribution of matter and galaxies in the Universe. They are of instrumental importance for understanding the emergence of the Cosmic Web. Their relatively simple shape and structure makes them into useful tools for extracting the value of a variety cosmic parameters, possibly including even that of the influence of dark energy. Perhaps most promising and challenging is the issue of the galaxies found within their realm. Not only does the pristine environment of voids provide a promising testing ground for assessing the role of environment on the formation and evolution of galaxies, the dearth of dwarf galaxies may even represent a serious challenge to the standard view of cosmic structure formation.Comment: 29 pages, 12 figures, invited review COSPA2008, Pohang, Korea. Modern Physics Letters A, accepted. For high-res version see http://www.astro.rug.nl/~weygaert/voids.cospa2008.weygaert.pd

    Chandra Observations and the Nature of the Anomalous Arms of NGC 4258 (M 106)

    Get PDF
    This paper presents high resolution X-ray observations with Chandra of NGC 4258 and infers the nature of the so called ``anomalous arms'' in this galaxy. The anomalous arms dominate the X-ray image; diffuse X-ray emission from the ``plateaux'' regions, seen in radio and Hα\alpha imaging, is also found. X-ray spectra have been obtained at various locations along the anomalous arms and are well described by thermal (mekal) models with kT in the range 0.37 - 0.6 keV. The previously known kpc-scale radio jets are surrounded by cocoons of hot X-ray emitting gas for the first 350 pc of their length. The radio jets, seen in previous VLBA and VLA observations, propagate perpendicular to the compact nuclear gas disk (imaged in water vapor maser emission). The angle between the jets and the rotation axis of the galactic disk is 60∘^{\circ}. The jets shock the normal interstellar gas along the first 350 pc of their length, causing the hot, X-ray emitting cocoons noted above. At a height of z = 175 pc from the disk plane, the jets exit the normal gas disk and then propagate though the low density halo until they reach ``hot spots'' (at 870 pc and 1.7 kpc from the nucleus), which are seen in radio, optical line and X-ray emission. These jets must drive mass motions into the low density halo gas. This high velocity halo gas impacts on the dense galactic gas disk and shock heats it along and around a ``line of damage'', which is the projection of the jets onto the galactic gas disk as viewed down the galaxy disk rotation axis. However, because NGC 4258 is highly inclined (ii = 64∘^{\circ}), the ``line of damage'' projects on the sky in a different direction to the jets themselves. We calculate the expected p.a. of the ``line of damage'' on the sky and find that it coincides with the anomalous arms to within 2∘^{\circ}. (Abstract truncated).Comment: 12 pages plus 9 figures, to be published in the Astrophysical Journal, v560, nr 1, pt 1 (Oct 10, 2001 issue
    • 

    corecore