829 research outputs found

    Microscopic Observation of Plastic Deformation of Polycrystalline Aluminum by Laser Scanning Microscope

    Get PDF
    Free surface of polycrystalline metal becomes roughened after plastic deformation. The surface roughening is closely related to the inhomogeneity of polycrystalline metals, that is, to the inhomogeneous plastic deformation of respective grains. In the present study, inhomogeneous deformation on the free surface of polycrystalline aluminum specimen during uniaxial tension is studied. The inhomogeneous deformation of grains in the central area of the free surface of specimen is observed by the laser scanning microscope, while the inhomogeneous deformation perpendicular to the surface is studied by the laser scanning microscope as well as the stylus measuring instrument. It is shown that the surface roughness and the strain of respective grains increase with the applied strain. Discussions are made on the change in the surface roughness, the strain in each grain and the slip-line angles with the applied strain

    Coalgebraic Trace Semantics for Buechi and Parity Automata

    Get PDF
    Despite its success in producing numerous general results on state-based dynamics, the theory of coalgebra has struggled to accommodate the Buechi acceptance condition---a basic notion in the theory of automata for infinite words or trees. In this paper we present a clean answer to the question that builds on the "maximality" characterization of infinite traces (by Jacobs and Cirstea): the accepted language of a Buechi automaton is characterized by two commuting diagrams, one for a least homomorphism and the other for a greatest, much like in a system of (least and greatest) fixed-point equations. This characterization works uniformly for the nondeterministic branching and the probabilistic one; and for words and trees alike. We present our results in terms of the parity acceptance condition that generalizes Buechi\u27s

    Parity Automata for Quantitative Linear Time Logics

    Get PDF
    We initiate a study of automata-based model checking for previously proposed quantitative linear time logics interpreted over coalgebras. Our results include: (i) an automata-theoretic characterisation of the semantics of these logics, based on a notion of extent of a quantitative parity automaton, (ii) a study of the expressive power of Buchi variants of such automata, with implications on the expressiveness of fragments of the logics considered, and (iii) a naive algorithm for computing extents, under additional assumptions on the domain of truth values

    Observation of Orientation Change During Plastic Deformation of Polycrystalline Copper by EBSD Method

    Get PDF
    Change in crystal orientation and strain of individual grains during tensile plastic deformation are studied to clarify on the microscopic deformation behavior of polycrystalline copper. The orientation of grain is measured by electron backscatter diffraction (EBSD) technique in the scanning electron microscope. The principal strain of grain is also measured by obtaining the approximated ellipse of strain distribution. The deformation of grains dependent on their initial orientation and the rotation of the principal strain during uniaxial tension are clarified

    Microscopic Surface Change of Polycrystalline Aluminum duringTensile Plastic Deformation

    Get PDF
    Roughening on free surface of polycrystalline metal during plastic deformation is closely related to the inhomogeneous deformation in the respective grain at the surface. Uniaxial tensile tests are carried out on annealed pure aluminum sheet specimens with various averaged grain sizes. The roughening is measured by a 3-dimensional stylus instrument to examine the roughness change in both sides of specimen surfaces at each strain. The irregularities on one side are reversed on the backside, when the averaged grain size is as large as the thickness of the specimen. Discussions are made on the relation between the surface shapes of both sides adopting the cross correlation factor. The strains of respective grains are also measured from the grain boundary shape before and after plastic deformation. There are some deviations in the strains of the grains and their standard deviation increases with the applied strain

    Fabrication of CNT/Cu Composite Yarn via Single-Step Electrodeposition

    Get PDF
    Carbon nanotube (CNT)/Cu composite yarns were formed via a single-step electrodeposition process. A twisted CNT yarn composed of multiwalled CNTs (MWCNTs) was used. Copper was directly electrodeposited onto the CNT yarn under galvanostatic conditions using copper sulfate baths with and without additives. Four additives (polyethylene glycol (PEG), chloride anion (Cl-), bis(3-sulfopropyl)disulfide (SPS), and Janus green B (JGB)) that are well known as "via-filling additives" were used together. The surface and cross-sectional microstructures of the copper-deposited CNT yarns were analyzed. Copper was electrodeposited only onto the surface of the CNT yarn from the bath without additives, resulting in a copper-coated CNT yarn. By contrast, copper was deposited not only onto the surface but also into the interior of the CNT yarn from the bath with the additives. The amount of copper deposited into the CNT yarn tended to increase with increasing PEG and Cl-concentrations. The current density also affected the size and location of the deposited copper particles. When the electrodeposition conditions were optimized, copper was relatively homogeneously deposited into the interior of the CNT yarn, resulting in a CNT/Cu composite yarn. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.ArticleJOURNAL OF THE ELECTROCHEMICAL SOCIETY. 167(10):102509 (2020)journal articl

    Tumor epitope spreading by a novel multivalent therapeutic cellular vaccine targeting cancer antigens to invariant NKT-triggered dendritic cells in situ

    Get PDF
    IntroductionCancer is categorized into two types based on the microenvironment: cold and hot tumors. The former is challenging to stimulate through immunity. The immunogenicity of cancer relies on the quality and quantity of cancer antigens, whether recognized by T cells or not. Successful cancer immunotherapy hinges on the cancer cell type, antigenicity and subsequent immune reactions. The T cell response is particularly crucial for secondary epitope spreading, although the factors affecting these mechanisms remain unknown. Prostate cancer often becomes resistant to standard therapy despite identifying several antigens, placing it among immunologically cold tumors. We aim to leverage prostate cancer antigens to investigate the potential induction of epitope spreading in cold tumors. This study specifically focuses on identifying factors involved in secondary epitope spreading based on artificial adjuvant vector cell (aAVC) therapy, a method established as invariant natural killer T (iNKT) -licensed DC therapy.MethodsWe concentrated on three prostate cancer antigens (prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP)). By introducing allogeneic cells with the antigen and murine CD1d mRNA, followed by α-galactosylceramide (α-GalCer) loading, we generated five types of aAVCs, i.e, monovalent, divalent and trivalent antigen-expressing aAVCs and four types of prostate antigen-expressing cold tumors. We evaluated iNKT activation and antigen-specific CD8+ T cell responses against tumor cells prompted by the aAVCs.ResultsOur study revealed that monovalent aAVCs, expressing a single prostate antigen, primed T cells for primary tumor antigens and also induced T cells targeting additional tumor antigens by triggering a tumor antigen-spreading response. When we investigated the immune response by trivalent aAVC (aAVC-PROS), aAVC-PROS therapy elicited multiple antigen-specific CD8+ T cells simultaneously. These CD8+ T cells exhibited both preventive and therapeutic effects against tumor progression.ConclusionsThe findings from this study highlight the promising role of tumor antigen-expressing aAVCs, in inducing efficient epitope spreading and generating robust immune responses against cancer. Our results also propose that multivalent antigen-expressing aAVCs present a promising therapeutic option and could be a more comprehensive therapy for treating cold tumors like prostate cancer

    Effect of Welding Speed on Oxygen and Nitrogen Contents in SAW Metals

    Full text link

    Depth-averaged 2D models with effects of secondary currents for computation of flow at a channel confluence

    Get PDF
    River hydrodynamicsTurbulent open channel flow and transport phenomen
    • …
    corecore