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Gender Difference in Alcoholic Liver Disease 
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Hideshi Yoshikawa and Yoshiyuki Nakayama 
Showa Clinic, Kohoku-ku, Yokohama, Kanagawa, Japan 

1. Introduction 

Alcoholic liver disease occurs after prolonged heavy drinking, particularly among persons 

who are physically dependent on alcohol. Alcoholic liver disease is pathologically classified 

into three forms: fatty liver (hepatic steatosis), alcoholic hepatitis, and cirrhosis. There is 

considerable overlap among these conditions. The incidence of alcoholic liver disease 

increases in a dose-dependent manner proportionally to the cumulative alcoholic intake. 

Alcoholism is increasing among females, owing to a decline in the social stigma attached to 

drinking and to the ready availability of alcohol in supermarkets. In general, however, 

males have a greater opportunity for drinking. In the United States, the National 

Comorbidity Survey estimated that, at some time in their lives, 6.4% of females and 12.5% of 

males will meet the criteria for alcoholic abuse (Kessler et al., 1994). The Italian longitudinal 

study on aging showed that 42% of elderly females and 12% of elderly males were lifelong 

abstainers (Buja et al., 2010). In Japan, based on data from the National Nutrition Survey, 

heavy drinkers with a daily consumption exceeded 40 g of ethanol per day for females and 

60 g of ethanol per day for males were more frequently observed in males (Figure 1). 

Despite the male predominance for alcoholism, chronic alcohol consumption induces more 

rapid and more severe liver injury in females than males.  

In contrast, the progression of hepatic fibrosis in chronic hepatitis B and C appears to be 

slower in females than in males (Poynard et al., 1997; Poynard et al., 2003; Rodriguez-Torres 

et al., 2006; Wright et al., 2003). Hepatic fibrosis is fibrous scarring of the liver in which 

excessive collagens build up along with the duration and extent of persistence of liver 

injury. In other words, overproduced collagens are deposited in injured areas instead of 

destroyed hepatocytes. Moreover, females, especially before menopause, produce antibodies 

against hepatitis B virus (HBV) surface antigen (HBsAg) and HBV e antigen (HBeAg) at 

higher frequency than males (Furusyo et al., 1999; Zacharakis et al., 2005). In chronic 

infection with hepatitis C virus (HCV), the clearance rate of blood HCV RNA appears to be 

higher in females (Bakr et al., 2006). Most asymptomatic carriers of HCV with persistent 

normal alanine aminotransferase (ALT) are females and have a good prognosis with a low 

risk of progression of hepatic fibrosis to the end-stage cirrhosis and its complications such as 

hepatocellular carcinoma (HCC) (Gholson et al., 1997; Puoti et al., 2002). The menopause is 

associated with accelerated progression of hepatic fibrosis, and the HCC risk is inversely 

related to the age at natural menopause (Shimizu, 2003; Shimizu et al., 2007a).  
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Fig. 1. Incidence of heavy drinkers with a daily consumption exceeded 40 g of ethanol per 
day for females and 60 g of ethanol per day for males based on data in 2002 from the 
National Nutrition Survey in Japan.  

The “female paradox” observed in patients with alcoholic liver disease in comparison with 
chronic viral hepatitis is based on susceptibility by females to liver damage from smaller 
quantities of ethanol.  

2. Alcoholic liver disease in females 

The amount of alcohol required producing hepatitis or cirrhosis varies among individuals, 

but as little as 40 g/day (Table 1) for 10 years is associated with an increased incidence of 
cirrhosis. There is considerable evidence to suggest that females require less total alcohol 

consumption (20 g ethanol/day) to produce clinically significant liver disease. Indeed, it is 
reported that the lowest point of weekly alcohol intake that helps to develop liver disease 

was higher in males (168-324 g) than in females (84-156 g), and that, in the case of heavy 
drinkers with a weekly consumption of 336-492 g, the relative risk for alcoholic liver disease 

was 3.7 in males and 7.3 in females, while it was 1.0 in the group with a weekly 
consumption of 12-72 g (Becker et al., 1996). Thus, safe drinking guidelines recommend that 

females do not drink more than 20 g ethanol per day, and males not more than 40 g ethanol. 
A common, reasonable recommendation is not to exceed 70 g of ethanol a week. 

Whisky 60 ml 20 g 

Wine 200 ml 20 g 

Beer 500 ml 20 g 

Table 1. Alcohol (ethanol) equivalents. 

The incidence of alcoholic liver disease correlates with the national per capita consumption of 
ethanol derived from sales of beer, wine and spirits (Figure 2). For instance, in France, the 
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United Kingdom and Germany, the annual per capita (average consumed by each person) 
ethanol consumption is over 9 litres per person per year, but in Asia such as China and Japan, 
it is 4 to 6.5 litres per person per year. Ethanol is metabolized by hepatic alcohol 
dehydrogenase (ADH) and the hepatic microsomal ethanol oxidizing system (MEOS) to 
acetaldehyde, which is subsequently converted by aldehyde dehydrogenase (ALDH) to 
acetate. The accumulation of acetaldehyde leads to the clinical syndrome of flushing, nausea 
and vomiting. Isoenzymes of ALDH with low activities are common among Asian populations 
and are associated with lower rates of alcoholism. These persons experience a similar flushing 
syndrome after consuming ethanol. This inhibits Asian populations from taking alcohol and is 
a negative risk for the development of alcoholic liver disease (Tanaka et al., 1996). 

 

Fig. 2. The annual per capita (average consumed by each person) consumption of ethanol 
derived from sales of beer, wine and spirits (whisky, brandy, vodka, rum, gin and all other 
spirits) in the world (National Tax Agency, 2008).  

In a study on the sex difference in Japanese patients hospitalized in Tokushima, western Japan, 
the incidence of alcoholic cirrhosis was 9-fold higher in males than females (Figure 3). 
However, females develop higher blood ethanol levels following a standard dose, at least in 
part, because of a smaller mean apparent volume of ethanol distribution. Moreover, sex 
differences in hepatic metabolism with increased production of acetaldehyde may contribute  
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Fig. 3. Male-to-female ratio in Japanese patients with alcoholic cirrhosis. Male-to-female 
ratio in alcoholic cirrhosis was examined from 1995 to 2000 and from 2001 to 2006 in 1,005 
Japanese patients (mean age 59.5 years, 10.4% females) hospitalized in Tokushima, western 
Japan. The subjects were seronegative for HBsAg and antibody against HCV. 

to vulnerability of females to alcohol consumption (Eriksson et al., 1996) (see below), 
suggesting that chronic alcohol consumption may induce more rapid and more severe liver 
injury in females than males. Females with alcoholic cirrhosis survive a shorter time than 
males (Sherlock & Dooley, 2002). 

3. Alcoholic liver injury and oxidative stress 

3.1 Ethanol hepatotoxicity 

Alcoholic liver injury is mainly due to ethanol hepatotoxicity linked to its metabolism by 
means of the ADH and cytochrome P450 2E1 (CYP2E1) pathways and the resulting 
production of toxic acetaldehyde (Figure 4). CYP2E1 is the key enzyme of the MEOS, and it 
is involved in the oxygenation of substrates such as ethanol and fatty acids. Although most 
ethanol is oxidized by ADH, CYP2E1 assumes a more important role in ethanol oxidation at 
elevated levels of ethanol or after chronic consumption of ethanol. CYP2E1 has a very high 
NADPH oxidase activity. NADPH/NADH oxidase is a primary source of reactive oxygen 
species (ROS) production in non-phagocytic cells such as hepatic stellate cells (HSCs) in the 
space of Disse (Figure 5). Therefore, excess of ethanol and fatty acids and their metabolism 
by means of CYP2E1 pathway produce extensively ROS, which cause oxidative stress with 
lipid peroxidation and membrane damage, leading to cell death. ROS and products of lipid 
peroxidation activate not only inflammatory cells including neutrophils, macrophages and 
Kupffer cells (hepatic resident macrophages), but HSCs as well. In the injured liver, HSCs 
are regarded as the primary target cells for inflammatory and oxidative stimuli, and 
undergo proliferation and transformation into myofibroblast-like cells. These HSCs are 
activated cells and are responsible for much of the collagen synthesis observed during 
hepatic fibrosis to cirrhosis. 
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Fig. 4. Ethanol oxidation by alcohol dehydrogenase (ADH) and the hepatic microsomal 
ethanol oxidizing system (MEOS), which involves cytochrome P450 2E1 (CYP2E1), produces 
acetaldehyde (Shimizu, 2009). CYP2E1 produces ROS (superoxide, O2-). Acetaldehyde is 
converted by aldehyde dehydrogenase (ALDH) to acetate. Both reactions of ethanol to 
acetaldehyde and then acetate reduce nicotinamide adenine dinucleotide (NAD) to its 
reduced form (NADH). Excess NADH causes inhibition of fatty acid oxidation, leading to 
fat accumulation (hepatic steatosis). 

 

Fig. 5. Schema of the sinusoidal wall of the liver. Schematic representation of hepatic stellate 
cells (HSCs) was based on the studies by Wake (Wake, 1999). Kupffer cells (hepatic resident 
macrophages) rest on fenestrated endothelial cells. HSCs are located in the space of Disse in 
close contact with endothelial cells and hepatocytes, functioning as the primary retinoid 
storage area. Collagen fibrils course through the space of Disse between endothelial cells 
and the cords of hepatocytes. 
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3.2 Excess fatty acids lead to hepatic steatosis 

Increased lipid peroxidation and accumulation of end products of lipid peroxidation are 
commonly observed in alcoholic liver disease and non-alcoholic fatty liver disease (NAFLD) 
based on studies of human alcohol-related liver injury and animal models of diet-induced 
hepatic steatosis and drug-induced steatohepatitis (Berson et al., 1998; Letteron et al., 1993; 
Letteron et al., 1996). Fatty liver is the result of the deposition of triglycerides via the 
accumulation of fatty acids in hepatocytes. In the progression of fatty liver disease, lipid 
peroxidation products are generated because of impaired ǃ-oxidation of the accumulated 
fatty acids. The major site for fatty acid ǃ-oxidation (degradation of fatty acids) in the liver is 
hepatocyte mitochondria (Figure 6). Key mediators of impaired fatty acid ǃ-oxidation 
include a reduced mitochondrial electron transport (respiratory chain dysfunction). In 
addition to impaired mitochondrial ǃ-oxidation of fatty acids, an activity of CYP2E1 in the  

 

Fig. 6. Increased hepatic uptake of free fatty acids, increased triglyceride synthesis, and 
impaired transport of very low-density lipoprotein (triglyceride-rich lipoprotein) into the 
blood mainly contribute to the accumulation of hepatocellular triglycerides. Microsomal 
trigyceride transfer protein (MTP) is essential for the secretion of very low-density 
lipoprotein. Excess triglycerides are stored as lipid droplets in hepatocytes, which in turn 
results in a preferential shift to fatty acid degradation (ǃ-oxidation), leading to the formation 
of ROS and lipid peroxidation products. 
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microsomes is increased. Elevated CYP2E1 and mitochondrial defects result in an increase 
in the ROS formation and lipid peroxidation products. ROS and lipid peroxidation in turn 
cause further mitochondrial dysfunction and oxidative stress, thus contributing to cell death 
via ROS-induced DNA injury and membrane lipid peroxidation and discharge of products 
of lipid peroxidation, malondialdehyde (MDA) and 4-hydroxynonecal (HNE), into the space 
of Disse. MDA and HNE besides ROS are able to activate inflammatory cells (neutrophils, 
macrophages and Kupffer cells) and HSCs. Activated inflammatory cells in turn produce 
chemokines as well as tumor necrosis factor-ǂ (TNF-ǂ) and ROS. Chemokines such as 
monocytes chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) attract neutrophils, 
lymphocytes, monocytes, macrophages, and Kupffer cells to inflammatory sites, leading to 
the persistent liver injury. 

3.3 CYP2E1 

Oxidation of ethanol through the ADH and CYP2E1 pathways produces acetaldehyde 
which is also toxic to the hepatocyte mitochondria. Acetaldehyde aggravates oxidative 
stress by binding to reduced glutathione, an antioxidant, and promoting its leakage, which 
triggers an inflammatory response of the host. This involves the activation of Kupffer cells 
and the attraction of inflammatory cells to injured sites. The inflammatory cells in the liver 
produce transforming growth factor–ǃ (TGF-ǃ) and proinflammatory mediators including 
TNF-ǂ and ROS, leading to oxidative tress and hepatic fibrosis. Thus, TNF-ǂ mediates not 
only the early stages of alcoholic liver disease but also the transition to more advanced 
stages of liver damage. 

Reactions of ethanol converted to acetaldehyde and subsequently acetate reduce 
nicotinamide adenine dinucleotide (NAD) to its reduced form (NADH). Excess NADH 
causes a number of metabolic disorders, including stimulation of the fatty acid synthesis 
and inhibition of the Krebs cycle and of its fatty acid oxidation (Lieber, 2004). The 
stimulation of the fatty acid synthesis and inhibition of fatty acid oxidation favor fat 
accumulation (hepatic steatosis) and hyperlipidemia.  

CYP2E1 activity is elevated in the livers of obese animals (Raucy et al., 1991) and non-
alcoholic steatohepatitis (NASH) patients (Weltman et al., 1998) as well as patients with 
alcoholic liver disease. The role of CYP2E1 in fatty acid metabolism supports the concept of 
a nutritional role for CYP2E1. Indeed, besides its ethanol-oxidizing activity, CYP2E1 
catalyzes fatty acid ω-hydroxylations (microsomal ω-oxidation of fatty acids) and 
metabolizes ketones. Fatty acids and ketones increase especially in obesity and diabetes, and 
their excess up-regulates CYP2E1. CYP2E1 leaks ROS as part of its operation, and when 
increased ROS production exceed the cellular antioxidant defense systems, excess ROS 
result in oxidative stress with its pathologic consequences. This is true when excess alcohol 
has to be metabolized, as in alcoholic steatohepatitis, or when CYP2E1 is confronted by an 
excess of fatty acids and ketones associated with obesity, diabetes, or both, resulting in 
NASH (Lieber, 2004).  

4. Endotoxin in alcoholic liver injury 

Alcohol ingestion disrupts gastrointestinal barrier function and subsequently induces the 
diffusion of luminal bacterial products including bacterial lipopolysaccharides (endotoxins) 
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into the portal vein. Experiments using animals show direct evidence of increased 
translocation of endotoxin from the gut lumen into the portal bloodstream caused by 
ethanol (Mathurin et al., 2000). Acute ethanol ingestion, especially at high concentrations, 
facilitates the absorption of endotoxin from rat small intestine via an increase in intestinal 
permeability, which may play an important role in endotoxemia observed in alcoholic liver 
injury (Tamai et al., 2000). Increased endotoxin levels in the portal blood are essential for 
initiation and progression of alcoholic liver disease (Bode & Bode, 2005). 

Bacterial translocation from the gastrointestinal tract, namely spillover endotoxemia, is 
important in the relationship between endotoxin and hepatotoxicity in the 
reticuloendothelial system such as monocytes-macrophages and Kupffer cells. Gut-derived 
endotoxin activates Kupffer cells, which produce proinflammatory mediators such as TNF-ǂ 
and ROS. The ability of Kupffer cells to eliminate and detoxify various exogenous and 
endogenous substances including endotoxin is an important physiological regulatory 
function (Figure 7). 

 

Fig. 7. Activation of Kupffer cells by gut-derived endotoxin plays a pivotal role in alcoholic 
liver injury (Shimizu, 2009). Following chronic alcohol ingestion, endotoxin, also called 
lipopolysaccharide, released from intestinal gram-negative bacteria moves from 
gastrointestinal tract (gut) into the liver via the portal bloodstream. 

Like chronic ethanol feeding, TNF-ǂ cytotoxicity is also with alteration of mitochondrial 
function. The mitochondria of TNF-ǂ-exposed cells overproduce ROS derived from the 
respiratory chain. The mitochondria themselves then become the targets of ROS, thus setting 
up a cycle of injury (Nagata et al., 2007). In addition to ROS production, TNF-ǂ prompts the 
opening of the mitochondrial permeability transition (MPT). The MPT is the regulatable 
opening of a large and non-specific pore across the outer and inner mitochondrial 
membrane. Ethanol may also increase the susceptibility of MPT induction by TNF-ǂ at the 
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mitochondrial level, possibly through an increase in ROS production caused by respiratory 
chain dysfunction and/or CYP2E1 (Pastorino & Hoek, 2000). 

Ethanol-induced oxidative stress is the result of the combined impairment of antioxidant 
defense and the ROS production by the mitochondrial electron transport chain, the ethanol-
induced CYP2E1 and activated phagocyte such as macrophages and Kupffer cells (Albano, 
2006). Indirectly, chronic ethanol ingestion may augment oxidative stress by decreasing 
antioxidant defenses such as reducing glutathione peroxidase and glutathione homeostasis 
(Figure 8). 

 

Fig. 8. Oxidative stress and hepatocyte damage (Shimizu and Ito, 2007). A primary source of 
reactive oxygen species (ROS) production is mitochondrial NADPH/NADH oxidase. 
Hydrogen peroxide (H2O2) is converted to a highly reactive ROS, the hydroxyl radical, in 
the presence of transition metals such as iron (+Fe) and copper. The hydroxyl radical 
induces DNA cleavage and lipid peroxidation in the structure of membrane phospholipids, 
leading to cell death and discharge of products of lipid peroxidation, malondialdehyde 
(MDA) and 4-hydroxynonenal (HNE) into the space of Disse. Cells have comprehensive 
antioxidant protective systems, including SOD, glutathione peroxidase and glutathione 
(GSH). Upon oxidation, GSH forms glutathione disulfide (GSSG). 

5. Sex difference of ADH and CYP2E1 via growth hormone and estrogens 

5.1 Gastric ADH in females 

After an equivalent dose of alcohol, females have higher blood ethanol levels than males 
(Nolen-Hoeksema, 2004). There are multiple explanations for this. First, females are 
generally smaller than males so the same dose of alcohol leads to higher blood alcohol levels 
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for females than males. Second, female body water content is smaller than male per 
kilogram of body weight. Thus, a dose of ethanol is distributed in a smaller volume of water 
in females than in males, leading to somewhat higher concentrations of ethanol in female 
blood (Frezza et al., 1990).  

Third, the first pass metabolism of alcohol in the stomach may lead to higher blood alcohol 
levels in females than males. In the stomach, alcohol is metabolized with the enzyme gastric 
ADH. The stomach thus acts as a barrier against the penetration of alcohol into the body, by 
retaining and breaking down part of the alcohol (Nolen-Hoeksema, 2004). Gastric ADH 
activity is lower in females than in males; one study found that for a given alcohol dose, 
male ADH levels were two times higher than female levels, and in turn, female blood 
alcohol levels were higher than those of males (Frezza et al., 1990).  

This sex difference in metabolism of alcohol appears to hold for younger adults but not 
older adults. ADH activity decreases with age, particularly for males, leading to similar 
blood alcohol concentrations in older males and females, or even higher concentrations in 
older males than older females (Nolen-Hoeksema, 2004). 

5.2 Growth hormone secretion in females 

The profile of growth hormone secretion pattern shows clear sex dimorphism (Ameen & 
Oscarsson, 2003). In female rats, the growth hormone is continuously secreted, and the 
hormone levels are always detectable in the circulation, while, in male rats, it is secreted by 
episodic bursts every 3.5 to 4 hours with low or undetectable levels between peaks (Shapiro 
et al., 1995). Integrated 24-hour growth hormone secretion (Clasey et al., 2001) and fasting 
blood growth hormone levels (Figure 9) are higher in women than in men. Growth hormone 
secretion is stimulated by estrogens (Ameen & Oscarsson, 2003). Oral and high-dose 
transdermal estrogen administration in menopausal women increases integrated 24-hour 
growth hormone secretion (Friend et al., 1996). 

 

Fig. 9. Fasting mean blood levels of growth hormone in 15 premenopausal women (mean 
age 41.3 years) and 15 age-matched men (mean age 41.1 years) of healthy non-obese (body 
mass index ≥ 18.5 to 24.9 kg/m2) individuals. The subjects had no history of alcohol abuse 
(defined as an alcohol intake >20 g/day). 
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Interestingly, growth hormone increases ADH activity in the liver. The steady exposure of 

hepatocytes in cultures to growth hormone resulting in increased ADH activity resembles 

the female pattern of growth hormone secretion (Potter et al., 1993). ADH activity is higher 

in female rats and mice than in their male counterparts (Mezey, 2000). Thus, increased rates 

of the resulting production of toxic acetaldehyde in females compared with males may be 

responsible for the known increased susceptibility to alcohol-induced liver injury by 

females. Females are more likely to progress from alcoholic hepatitis to cirrhosis even if they 

abstain. 

5.3 Endotoxin after ethanol in females 

Endotoxin-stimulated monocytes in males produce more TNF-ǂ as compared to females 

(Bouman et al., 2004). Like Kupffer cells, monocytes stimulated by endotoxin induce 

proinflammatory cytokines and ROS. In studies using animals, however, the stimulation of 

Kupffer cells by estrogen increased sensitivity to endotoxin after ethanol (Ikejima et al., 

1998). It appears that monocytes-macrophages respond differently to endotoxins compared 

to Kupffer cells as far as the signaling pathways are concerned (Schultze et al., 1999). The 

estrogen addition to ethanol ingestion enhanced TNF-ǂ production in Kupffer cells via 

elevation of the blood endotoxin level and hepatic endotoxin receptor (CD14) expression, 

resulting in increased inflammatory activity in the liver (Yin et al., 2000). The administration 

of ethanol in female rats induced the hepatic activity of CYP2E1, and the ethanol-induced 

CYP2E1 activity was reduced by the treatment with antiestrogen (Jarvelainen et al., 2001). 

Because activity of cytochrome P-450 (CYP) isoenzymes is regulated by circulating growth 

hormone, sex differences in growth hormone secretion profiles account for a different 

expression pattern of hepatic CYP isoenzymes between females and males (Agrawal & 

Shapiro, 2001).  

6. Favorable role of female factors in chronic viral hepatitis 

Clinical observations and death statistics support the view that chronic hepatitis C and B 

appears to progress more rapidly in males than in females (Poynard et al., 1997; Poynard et 

al., 2003; Rodriguez-Torres et al., 2006; Wright et al., 2003), and that cirrhosis is largely a 

disease of men and postmenopausal women with the exception of classically autoimmune 

liver diseases, such as primary biliary cirrhosis and chronic autoimmune hepatitis (Shimizu, 

2003). HCV infections are more common than HBV infections in Japan and Western 

countries, and are recognized as a major causative factor of chronic hepatitis, cirrhosis, and 

HCC. According to a report of the International Agency for Research on Cancer 

(Brannstrom et al., 1999), the male:female ratio of the age-standardized incidence per 

100,000 of liver cancer worldwide is 2.9：1, and in Asia (particularly in China, Japan, and 

Taiwan), the incidence of liver cancer is high and it accounts for half of all liver cancer cases 

in the world.  

The prevalence of HBsAg is reported to be higher in males than in females throughout the 
world (Blumberg et al., 1972). In a prospective follow-up study of up to 19 years on HBsAg 
carriers in Okinawa in Japan, clearance of HBsAg was found more frequently in females 
(7.8%) than in males (5.8%) (Furusyo et al., 1999). Seroconversion from HBeAg to its 
antibody (anti-HBe) occurs more frequently in females than in males (Zacharakis et al., 
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2005). In chronic HCV infection, the clearance rate of blood HCV RNA appears to be higher 
in females (Bakr et al., 2006). Demographic data from the United States (Gholson et al., 
1997), Europe (France and Italy) (Puoti et al., 2002; Renou et al., 2002), and Japan (Okanoue 
et al., 2005) show that most HCV carriers with persistently normal ALT (asymptomatic 
carriers) are females, and have a good prognosis with a low risk of progression to cirrhosis 
and HCC. The menopause is associated with accelerated progression of hepatic fibrosis, and 
the HCC risk is inversely related to the age at natural menopause (Shimizu, 2003; Shimizu et 
al., 2007a). Chronic HCV- and HBV-infected patients of female sex and under 50 years old, 
namely premenopausal women are least vulnerable to HCC (Shimizu, 2009). 

Premenopausal women have lower hepatic iron stores and a decreased production of 

proinflammatory cytokines such as TNF-ǂ (Clerici et al., 1991; Pfeilschifter et al., 2002; 

Shimizu et al., 2007b). Iron is essential for life, but is toxic in excess, because it produces ROS 

that react readily with lipids and DNA, leading to cell death and DNA mutagenesis. An 

experimental animal study showed that hepatic steatosis spontaneously becomes evident in 

an aromatase-deficient mouse, which lacks the intrinsic ability to produce estrogen and is 

impaired with respect to hepatocellular fatty acid ǃ-oxidation. Estrogen replacement 

reduces hepatic steatosis and restores the impairment in mitochondrial and peroxisomal 

fatty acid ǃ-oxidation to a wild-type level (Nemoto et al., 2000). In addition, tamoxifen is a 

well known antiestrogen used in the hormone treatment of estrogen receptor-positive breast 

cancer, and it has been shown to be associated with an increased risk of developing fatty 

liver and NASH in such patients (Oien et al., 1999; Van et al., 1996). Estrogens are potent 

endogenous antioxidant (Lacort et al., 1995; Yoshino et al., 1987), suppresses hepatic fibrosis 

in animal models, and attenuates induction of redox sensitive transcription factors, 

hepatocyte apoptosis and HSC activation by inhibiting the generation of ROS and TGF-ǃ in 

primary cultures (Itagaki et al., 2005; Lu et al., 2004; Shimizu et al., 1999; Yasuda et al., 1999; 

Zhou et al., 2001). Variant estrogen receptors are expressed in HCC patients and, to a greater 

extent, in male patients with chronic liver disease than in female patients, even at an early 

stage of chronic liver disease (Villa et al., 1995; Villa et al., 1998). The occurrence of variant 

estrogen receptors leads to the loss of estrogen responsiveness. These lines of evidence 

suggest that the greater progression of hepatic fibrosis and HCC in men and 

postmenopausal women may be due, at least in part, to both a lower production of estrogen 

and a lower response to the action of estrogen.  

7. Heavy alcohol intake and HCC 

Chronic alcohol intake (mostly heavy alcohol use of more than 50 g/day) and alcoholic 
cirrhosis have long been recognized as a cause of HCC. In alcoholic cirrhosis, the risk of 
HCC is about 1% per a year. Most HCC cases are in males. There are no clinical or 
pathological differences compared with HCC complicating chronic HBV and HCV infection. 
However, it is not certain whether alcohol is a true carcinogen. Several epidemiologic 
studies among alcoholics show a high prevalence of HBV markers (16%-70%) and HCV 
markers (10%-20%) as compared with a background prevalence of close to 5% and less than 
1%, respectively (Bosch et al., 2004). These prevalences are even higher in HCC cases who 
are also alcoholics (27% to 81% of HBV markers and 50% to 77% of HCV markers), 
suggesting a complex interaction between alcohol and viral infections in the etiology of 
HCC (Di Bisceglie et al., 1998).  
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Case-control studies have shown that, as a result of the synergy between alcohol intake and 
HCV infection, the risk of liver cancer is increased approximately 2- to 4-fold among cases 
drinking more 60-80 g/day of alcohol (Fattovich et al., 2004). The presumed basis for this is 
that both alcohol and HCV infection independently promote the development of cirrhosis. 
In a longitudinal cohort study of cirrhotic patients with HCV infection, heavy alcohol intake 
(>65 g/day) was an independent factor for the development of HCC, increasing the risk 
approximately 3-fold (Aizawa et al., 2000).  

A case-control study also shows a synergism between alcohol drinking and HBV infection on 
the risk of HCC, increasing the risk approximately 2-fold for HBsAg-positive subject of both 
sexes who drink more than 60 g/day of ethanol compared with HBsAg-positive non-drinkers 
(Donato et al., 2006). In a longitudinal cohort study of patients with HBV-related cirrhosis, 
heavy alcohol intake was associated with a 3-fold increased risk for HCC (Ikeda et al., 1998).  

Studies in northern Italy and Greece estimated that the attributable fraction of high levels of 
alcohol consumption, once adjusted for HBV and HCV status, were 45% in Italy (Donato et 
al., 1997) and 15% in Greece (Kuper et al., 2000). In low-risk populations, heavy alcohol 
intake may account for the majority of the HCC cases who are seronegative for HBV and 
HCV markers. 

8. Conclusion 

A large body of evidence has been accumulated suggesting that increased oxidative stress is 
an essential step in the development of hepatic fibrogenesis and carcinogenesis. 
Environmental and lifestyle risk factors such as HCV and HBV infection and heavy alcohol 
intake lead to increased oxidative stress, which in general occurs more frequently in males. 
Moreover, biological female sex factors such as estrogens, hepatic iron storage status, and 
growth hormone play antioxidative and cytoprotective roles in the functional and 
morphological modulation of the liver physiopathology. However, it should be noted that 
females consistently drink less than males and appear to suffer serious negative 
consequences of alcohol consumption earlier and to a greater degree than males. 
Specifically, chronic alcohol consumption induces more rapid and more severe liver injury 
in females than males. The “female paradox” observed in patients with alcoholic liver 
disease in comparison with chronic viral hepatitis is based on susceptibility by females to 
liver damage from smaller quantities of ethanol. Being female or male is an important basic 
human variable that affects health and liver disease throughout the life span. Sex is defined 
as female or male according to their biological functions, while gender is shaped by 
environment and experience. Better knowledge of the basic mechanisms underlying the sex-
associated differences during hepatic fibrogenesis and carciogenesis may open up new 
avenues for the prevention and treatment of chronic liver disease. 
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