170 research outputs found

    Differences between Doppler velocities of ions and neutral atoms in a solar prominence

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.Context. In astrophysical systems with partially ionized plasma the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic field’s Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes like magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. Aims. This paper investigates the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. Methods. We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory, and compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. Results. There are instances when the difference in velocities between neutral atoms and ions is significant, e.g. 1433 events (∼ 3 % of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3σ of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. Conclusions. We interpreted the difference of Doppler velocities as a result of motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma.This work was supported by a Grant-in-Aid for Scientific Research (No. 22244013, P.I. K. Ichimoto; No. 15K17609, P.I. T. Anan; No. 16H01177, P.I. T. Anan) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. A.H. is supported by his STFC Emest Rutherford Fellowship grant number ST/L00397X/2

    Magnetic Flux Loss and Flux Transport in a Decaying Active Region

    Full text link
    We estimate the temporal change of magnetic flux perpendicular to the solar surface in a decaying active region by using a time series of the spatial distribution of vector magnetic fields in the photosphere. The vector magnetic fields are derived from full spectropolarimetric measurements with the Solar Optical Telescope aboard Hinode. We compare a magnetic flux loss rate to a flux transport rate in a decaying sunspot and its surrounding moat region. The amount of magnetic flux that decreases in the sunspot and moat region is very similar to magnetic flux transported to the outer boundary of the moat region. The flux loss rates [(dF/dt)loss(dF/dt)_{loss}] of magnetic elements with positive and negative polarities are balanced each other around the outer boundary of the moat region. These results suggest that most of the magnetic flux in the sunspot is transported to the outer boundary of the moat region as moving magnetic features, and then removed from the photosphere by flux cancellation around the outer boundary of the moat region.Comment: 16 pages, 7 figures, Accepted for publication in Ap

    The Evershed Effect with SOT/Hinode

    Full text link
    The Solar Optical Telescope onboard Hinode revealed the fine-scale structure of the Evershed flow and its relation to the filamentary structures of the sunspot penumbra. The Evershed flow is confined in narrow channels with nearly horizontal magnetic fields, embedded in a deep layer of the penumbral atmosphere. It is a dynamic phenomenon with flow velocity close to the photospheric sound speed. Individual flow channels are associated with tiny upflows of hot gas (sources) at the inner end and downflows (sinks) at the outer end. SOT/Hinode also discovered ``twisting'' motions of penumbral filaments, which may be attributed to the convective nature of the Evershed flow. The Evershed effect may be understood as a natural consequence of thermal convection under a strong, inclined magnetic field. Current penumbral models are discussed in the lights of these new Hinode observations.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    Full text link
    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 A line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.Comment: 11 pages, 8 figures, 1 tabl
    • …
    corecore