542 research outputs found

    All-optical 160 Gbit/s RZ data retiming system incorporating a pulse shaping fibre Bragg grating

    No full text
    We characterize a 160Gbit/s retimer based on flat-topped pulses shaped using a superstructured fibre Bragg grating. The benefits of using shaped rather than conventional pulse forms in terms of timing jitter reduction are confirmed by bit-error-rate measurements

    Free Thermal Convection Driven by Nonlocal Effects

    Full text link
    We report and explain a convective phenomenon observed in molecular dynamics simulations that cannot be classified either as a hydrodynamics instability nor as a macroscopically forced convection. Two complementary arguments show that the velocity field by a thermalizing wall is proportional to the ratio between the heat flux and the pressure. This prediction is quantitatively corroborated by our simulations.Comment: RevTex, figures is eps, submited for publicatio

    Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper

    No full text
    We experimentally demonstrate the use of saw-tooth optical pulses, which are shaped using a fiber Bragg grating, to achieve robust and high performance time-domain add-drop multiplexing in a scheme based on cross-phase (XPM) modulation in an optical fiber, with subsequent offset filtering. As compared to the use of more conventional pulse shapes, such as Gaussian pulses of a similar pulse width, the purpose-shaped saw-tooth pulses allow higher extinction ratios for the add and drop windows and significant improvements in the receiver sensitivity for the dropped and added channels

    Probabilistic Three-Dimensional Model of an Offshore Monopile Foundation: Reliability Based Approach

    Get PDF
    When wind turbines are to be installed offshore, expensive geotechnical in-situ tests are carried out at the location of each turbine and only a quantile value (typically the 5% quantile) of the measured strength parameters is used as design parameter, e.g., the 5% quantile value of the undrained shear strength of the soil. Typically, measurement, statistical and model uncertainties are not taken into account in code-based, deterministic design. Hence, current methodology based design may be expensive, but the reliability of the foundation is unknown. Instead, a reliability-based design process based on stochastic analysis of the soil parameters is proposed to obtain an efficient design with known reliability and smaller costs for tests and construction. In this study a monopile foundation in undrained, over-consolidated clay is considered as an example. A three-dimensional (3D) finite-element model is established and a stochastic model for the undrained shear strength of the soil is proposed using random field theory. The Mohr–Coulomb constitutive model is used to model the soil behavior. Reliability indices of the monopile are obtained through an advanced reliability method and a probabilistic procedure is proposed regarding the 3D design of monopile foundations

    Point-by-point inscription of apodized fiber Bragg gratings

    Full text link
    We demonstrate apodized fiber Bragg gratings inscribed with a point-by-point technique. We tailor the grating phase and coupling amplitude through precise control over the longitudinal and transverse position of each laser-inscribed modification. This method of apodization is facilitated by the highly-localized, high-contrast modifications generated by focussed IR femtosecond laser inscription. Our technique provides a simple method for the design and implementation of point-by-point fiber Bragg gratings with complex apodization profiles.Comment: 6 pages, 4 figures, article in revie

    Probabilistic Three-Dimensional Model of an Offshore Monopile Foundation: Reliability Based Approach

    Get PDF
    When wind turbines are to be installed offshore, expensive geotechnical in-situ tests are carried out at the location of each turbine and only a quantile value (typically the 5% quantile) of the measured strength parameters is used as design parameter, e.g., the 5% quantile value of the undrained shear strength of the soil. Typically, measurement, statistical and model uncertainties are not taken into account in code-based, deterministic design. Hence, current methodology based design may be expensive, but the reliability of the foundation is unknown. Instead, a reliability-based design process based on stochastic analysis of the soil parameters is proposed to obtain an efficient design with known reliability and smaller costs for tests and construction. In this study a monopile foundation in undrained, over-consolidated clay is considered as an example. A three-dimensional (3D) finite-element model is established and a stochastic model for the undrained shear strength of the soil is proposed using random field theory. The Mohr–Coulomb constitutive model is used to model the soil behavior. Reliability indices of the monopile are obtained through an advanced reliability method and a probabilistic procedure is proposed regarding the 3D design of monopile foundations

    Experimental study on receiver filtering effects in a spectrum-sliced incoherent light WDM system using SOA based noise reduction

    No full text
    We investigate optical filtering effects at the receiver in a spectrum-sliced WDM access system incorporating a gain saturated SOA. System performance is shown to have a strong dependence on the receiver filter bandwidth and shape
    • …
    corecore