329 research outputs found

    Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2

    Full text link
    We present a detailed comparison of the electronic structure of BaFe2As2 in its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved photoemission studies. Using different experimental geometries, we resolve the full elliptic shape of the electron pockets, including parts of dxy symmetry along its major axis that are usually missing. This allows us to define precisely how the hole and electron pockets are nested and how the different orbitals evolve at the transition. We conclude that the imperfect nesting between hole and electron pockets explains rather well the formation of gaps and residual metallic droplets in the AFM phase, provided the relative parity of the different bands is taken into account. Beyond this nesting picture, we observe shifts and splittings of numerous bands at the transition. We show that the splittings are surface sensitive and probably not a reliable signature of the magnetic order. On the other hand, the shifts indicate a significant redistribution of the orbital occupations at the transition, especially within the dxz/dyz system, which we discuss

    Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface

    Full text link
    We investigate the bismuth (111) surface by means of time and angle resolved photoelectron spectroscopy. The parallel detection of the surface states below and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO) spitting. These strong deviations from the Rashba-like coupling cannot be treated in kp\textbf{k}\cdot \textbf{p} perturbation theory. Instead, first principle calculations could accurately reproduce the experimental dispersion of the electronic states. Our analysis shows that the giant anisotropy of the SO splitting is due to a large out-of plane buckling of the spin and orbital texture.Comment: 5 pages, 4 figure

    Machine Learning approaches for the design of biomechanically compatible bone tissue engineering scaffolds

    Get PDF
    Triply-Periodic Minimal Surfaces (TPMS) analytical formulation does not provide a direct correlation between the input parameters (analytical) and the mechanical and morphological properties of the structure. In this work, we created a dataset with more than one thousand TPMS scaffolds for the training of Machine Learning (ML) models able to find such correlation. Finite Element Modeling and image analysis have been used to characterize the scaffolds. In particular, we trained three different ML models, exploring both a linear and non-linear approach, to select the features able to predict the input parameters. Furthermore, the features used for the prediction can be selected in three different modes: i) fully automatic, through a greedy algorithm, ii) arbitrarily, by the user and iii) in a combination of the two above methods: i.e. partially automatic and partially through a user-selection. The latter, coupled with the non-linear ML model, exhibits a median error less than 3% and a determination coefficient higher than 0.89 for each of the selected features, and all of them are accessible during the design phase. This approach has been applied to the design of a hydroxyapatite TPMS scaffolds with prescribed properties obtained from a real trabecular-like hydroxyapatite scaffold. The obtained results demonstrate that the ML model can effectively design a TPMS scaffold with prescribed features on the basis of biomechanical, mechanobiology and technological constraints

    Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2

    Full text link
    We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport measurements and Angle Resolved photoemission spectroscopy. We observe that Fe and Ru orbitals hybridize to form a coherent electronic structure and that Ru does not induce doping. The number of holes and electrons, deduced from the area of the Fermi Surface pockets, are both about twice larger than in BaFe2As2. The contribution of both carriers to the transport is evidenced by a change of sign of the Hall coefficient with decreasing temperature. Fermi velocities increase significantly with respect to BaFe2As2, suggesting a significant reduction of correlation effects. This may be a key to understand the appearance of superconductivity at the expense of magnetism in undoped iron pnictides

    Ultrafast filling of an electronic pseudogap in an incommensurate crystal

    Full text link
    We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time resolved photoemission spectroscopy. The dispersion of electronic states is in qualitative agreement with band structure calculated for the VS2 slab without the incommensurate distortion. Nonetheless, the spectra display a temperature dependent pseudogap instead of quasiparticles crossing. The sudden photoexcitation at 50 K induces a partial filling of the electronic pseudogap within less than 80 fs. The electronic energy flows into the lattice modes on a comparable timescale. We attribute this surprisingly short timescale to a very strong electron-phonon coupling to the incommensurate distortion. This result sheds light on the electronic localization arising in aperiodic structures and quasicrystals

    Band structure parameters of metallic diamond from angle-resolved photoemission spectroscopy

    No full text
    International audienceThe electronic band structure of heavily boron doped diamond was investigated by angle-resolved photoemission spectroscopy on (100)-oriented epilayers. A unique set of Luttinger parameters was deduced from a comparison of the experimental band structure of metallic diamond along the Delta (GammaX) and Sigma(GammaK) high-symmetry directions of the reciprocal space, with theoretical band structure calculations performed both within the local density approximation and by an analytical k·p approach. In this way, we were able to describe the experimental band structure over a large three-dimensional region of the reciprocal space and to estimate hole effective masses in agreement with previous theoretical and experimental papers
    corecore