329 research outputs found
Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2
We present a detailed comparison of the electronic structure of BaFe2As2 in
its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved
photoemission studies. Using different experimental geometries, we resolve the
full elliptic shape of the electron pockets, including parts of dxy symmetry
along its major axis that are usually missing. This allows us to define
precisely how the hole and electron pockets are nested and how the different
orbitals evolve at the transition. We conclude that the imperfect nesting
between hole and electron pockets explains rather well the formation of gaps
and residual metallic droplets in the AFM phase, provided the relative parity
of the different bands is taken into account. Beyond this nesting picture, we
observe shifts and splittings of numerous bands at the transition. We show that
the splittings are surface sensitive and probably not a reliable signature of
the magnetic order. On the other hand, the shifts indicate a significant
redistribution of the orbital occupations at the transition, especially within
the dxz/dyz system, which we discuss
Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface
We investigate the bismuth (111) surface by means of time and angle resolved
photoelectron spectroscopy. The parallel detection of the surface states below
and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO)
spitting. These strong deviations from the Rashba-like coupling cannot be
treated in perturbation theory. Instead, first
principle calculations could accurately reproduce the experimental dispersion
of the electronic states. Our analysis shows that the giant anisotropy of the
SO splitting is due to a large out-of plane buckling of the spin and orbital
texture.Comment: 5 pages, 4 figure
Machine Learning approaches for the design of biomechanically compatible bone tissue engineering scaffolds
Triply-Periodic Minimal Surfaces (TPMS) analytical formulation does not provide a direct correlation between the input parameters (analytical) and the mechanical and morphological properties of the structure. In this work, we created a dataset with more than one thousand TPMS scaffolds for the training of Machine Learning (ML) models able to find such correlation. Finite Element Modeling and image analysis have been used to characterize the scaffolds. In particular, we trained three different ML models, exploring both a linear and non-linear approach, to select the features able to predict the input parameters. Furthermore, the features used for the prediction can be selected in three different modes: i) fully automatic, through a greedy algorithm, ii) arbitrarily, by the user and iii) in a combination of the two above methods: i.e. partially automatic and partially through a user-selection. The latter, coupled with the non-linear ML model, exhibits a median error less than 3% and a determination coefficient higher than 0.89 for each of the selected features, and all of them are accessible during the design phase. This approach has been applied to the design of a hydroxyapatite TPMS scaffolds with prescribed properties obtained from a real trabecular-like hydroxyapatite scaffold. The obtained results demonstrate that the ML model can effectively design a TPMS scaffold with prescribed features on the basis of biomechanical, mechanobiology and technological constraints
Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2
We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport
measurements and Angle Resolved photoemission spectroscopy. We observe that Fe
and Ru orbitals hybridize to form a coherent electronic structure and that Ru
does not induce doping. The number of holes and electrons, deduced from the
area of the Fermi Surface pockets, are both about twice larger than in
BaFe2As2. The contribution of both carriers to the transport is evidenced by a
change of sign of the Hall coefficient with decreasing temperature. Fermi
velocities increase significantly with respect to BaFe2As2, suggesting a
significant reduction of correlation effects. This may be a key to understand
the appearance of superconductivity at the expense of magnetism in undoped iron
pnictides
Ultrafast filling of an electronic pseudogap in an incommensurate crystal
We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time
resolved photoemission spectroscopy. The dispersion of electronic states is in
qualitative agreement with band structure calculated for the VS2 slab without
the incommensurate distortion. Nonetheless, the spectra display a temperature
dependent pseudogap instead of quasiparticles crossing. The sudden
photoexcitation at 50 K induces a partial filling of the electronic pseudogap
within less than 80 fs. The electronic energy flows into the lattice modes on a
comparable timescale. We attribute this surprisingly short timescale to a very
strong electron-phonon coupling to the incommensurate distortion. This result
sheds light on the electronic localization arising in aperiodic structures and
quasicrystals
Band structure parameters of metallic diamond from angle-resolved photoemission spectroscopy
International audienceThe electronic band structure of heavily boron doped diamond was investigated by angle-resolved photoemission spectroscopy on (100)-oriented epilayers. A unique set of Luttinger parameters was deduced from a comparison of the experimental band structure of metallic diamond along the Delta (GammaX) and Sigma(GammaK) high-symmetry directions of the reciprocal space, with theoretical band structure calculations performed both within the local density approximation and by an analytical k·p approach. In this way, we were able to describe the experimental band structure over a large three-dimensional region of the reciprocal space and to estimate hole effective masses in agreement with previous theoretical and experimental papers
- …