3 research outputs found
Prospective study for commercial and low-cost hyperspectral imaging systems to evaluate thermal tissue effect on bovine liver samples
Thermal ablation modalities, for example radiofrequency ablation (RFA) and microwave ablation, are intended to prompt controlled tumour removal by raising tissue temperature. However, monitoring the size of the resulting tissue damage during the thermal removal procedures is a challenging task. The objective of this study was to evaluate the observation of RFA on an ex vivo liver sample with both a commercial and a low-cost system to distinguish between the normal and the ablated regions as well as the thermally affected regions. RFA trials were conducted on five different ex vivo normal bovine samples and monitored initially by a custom hyperspectral (HS) camera to measure the diffuse reflectance (Rd) utilising a polychromatic light source (tungsten halogen lamp) within the spectral range 348â950 nm. Next, the light source was replaced with monochromatic LEDs (415, 565 and 660 nm) and a commercial charge-coupled device (CCD) camera was used instead of the HS camera. The system algorithm comprises image enhancement (normalisation and moving average filter) and image segmentation with K-means clustering, combining spectral and spatial information to assess the variable responses to polychromatic light and monochromatic LEDs to highlight the differences in the Rd properties of thermally affected/normal tissue regions. The measured spectral signatures of the various regions, besides the calculation of the standard deviations (δ) between the generated six groups, guided us to select three optimal wavelengths (420, 540 and 660 nm) to discriminate between these various regions. Next, we selected six spectral images to apply the image processing to (at 450, 500, 550, 600, 650 and 700 nm). We noticed that the optimum image is the superimposed spectral images at 550, 600, 650 and 700 nm, which are capable of discriminating between the various regions. Later, we measured Rd with the CCD camera and commercially available monochromatic LED light sources at 415, 565 and 660 nm. Compared to the HS camera results, this system was more capable of identifying the ablated and the thermally affected regions of surface RFA than the side-penetration RFA of the investigated ex vivo liver samples. However, we succeeded in developing a low-cost system that provides satisfactory information to highlight the ablated and thermally affected region to improve the outcome of surgical tumour ablation with much shorter time for image capture and processing compared to the HS system
Custom Hyperspectral Imaging System Reveals Unique Spectral Signatures of Heart, Kidney, and Liver Tissues
: The rapid advancement of diagnostic and therapeutic optical techniques for oncology demands a good understanding of the optical properties of biological tissues. This study explores the capabilities of hyperspectral (HS) cameras as a non-invasive and non-contact optical imaging system to distinguish and highlight spectral differences inbiological soft tissuesof three structures (kidney, heart, and liver) for use inendoscopic interventionoropen surgery. The study presents an optical system consisting of two individual setups, the transmission setup, and the reflection setup, both incorporating anHS camerawith apolychromatic light sourcewithin the range of 380 to 1050 nm to measure tissue's light transmission (Tr) and diffuse light reflectance (Rd), respectively. The optical system was calibrated with a customizedliquid optical phantom, then 30 samples from various organs were investigated fortissue characterizationby measuring both Tr and Rd at the visible and near infrared (VIS-NIR) band. We exploited the ANOVA test, subsequently by a Tukey's test on the created three independent clusters (kidney vs. heart: group I / kidney vs. liver: group II / heart vs. liver: group III) to identify the optimum wavelength for each tissue regarding their spectroscopic optical properties in the VIS-NIR spectrum. The optimum spectral span for the determined light Tr of the three groups was 640 âź 680 nm, and the ideal range was 720 âź 760 nm for the measured light Rd for mutual group I and group II. However, the group III range was different at a range of 520 âź 560 nm. Therefore, the investigation provides vital information concerning theoptimum spectral scalefor the computed light Tr and Rd of the investigatedbiological tissues(kidney, liver, and heart) to be employed in diagnostic andtherapeutic medical applications