15 research outputs found

    Novel domain-specific POU3F4 mutations are associated with X-linked deafness: examples from different populations

    Get PDF
    BACKGROUND: Mutations in the POU3F4 gene cause X-linked deafness type 3 (DFN3), which is characterized by inner ear anomalies. METHODS: Three Turkish, one Ecuadorian, and one Nigerian families were included based on either inner ear anomalies detected in probands or X-linked family histories. Exome sequencing and/or Sanger sequencing were performed in order to identify the causative DNA variants in these families. RESULTS: Four novel, c.707A>C (p.(Glu236Ala)), c.772delG (p.(Glu258ArgfsX30)), c.902C>T (p.(Pro301Leu)), c.987T>C (p.(Ile308Thr)), and one previously reported mutation c.346delG (p.(Ala116ProfsX26)) in POU3F4, were identified. All mutations identified are predicted to affect the POU-specific or POU homeo domains of the protein and co-segregated with deafness in all families. CONCLUSIONS: Expanding the spectrum of POU3F4 mutations in different populations along with their associated phenotypes provides better understanding of their clinical importance and will be helpful in clinical evaluation and counseling of the affected individuals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-015-0149-2) contains supplementary material, which is available to authorized users

    An amino acid deletion inSZT2 in a family with non-syndromic intellectual disability.

    Get PDF
    Autosomal recessive intellectual disability (ID) is characterized by extensive genetic heterogeneity. Recently, three mutations in SZT2 were reported in two unrelated children with unexplained infantile epileptic encephalopathy with severe ID. Here we report a European American family with three children having non-syndromic mild or moderate ID without seizures. Whole-exome sequencing of three affected siblings revealed a three base pair deletion (c.4202_4204delTTC) located in a 19 mb autozygous region on chromosome 1, leading to an amino acid deletion (p.Phe1401del) in SZT2. All three children were homozygous for the deletion and their parents were heterozygous as expected in autosomal recessive inheritance. SZT2 is highly expressed in neuronal tissues and regulates seizure threshold and neuronal excitation in mice. We conclude that the disruption of SZT2 with some residual function might lead to mild or moderate ID without seizures

    Dominant deafness–onychodystrophy syndrome caused by an ATP 6V1B2 mutation

    No full text
    Key Clinical Message Our report clarifies the role of ATP6V1B2 in patients with deafness and onycho‐osteodystrophy and confirms that a recurring ATP6V1B2 c.1516C>T [p.(Arg506*)], variant causes dominant deafness–onychodystrophy (DDOD) syndrome

    Studied family and identified SZT2 mutation.

    No full text
    <p>A) The pedigree of the family and pictures of the affected siblings corresponding to their position in the pedigree. B) Electropherograms showing identified mutation in SZT2 in the family. C) The longest shared autozygous region of 19 mb in three siblings discovered by whole-exome sequencing (on chromosome 1). Black, yellow, and gray denote homozygous, heterozygous, and missing genotypes, respectively. Red lines indicate the borders of the shared autozygous region. D) Conservation of SZT2: Phenylalanine 1401 is conserved among mammals (mouse, rat, house cat) and fish (tilapia). </p

    Unique spectrum of GJB2 mutations in Mexico

    No full text
    The aim of this study was to elucidate the involvement of mutations in three relatively common deafness genes in Mexican individuals with non-syndromic hearing loss. We sequenced GJB2 for mutations, screened for two deletions involving GJB6, del(GJB6-D13S1830) and del(GJB6-D13S1854), and for the m.1555A>G mutation in the MTRNR1 gene in 76 (71 simplex and 5 multiplex) unrelated Mexican probands with prelingual non-syndromic hearing loss. Samples were obtained from the Department of Genetics at Instituto Nacional de Rehabilitacion in Mexico City. Eight previously reported pathogenic variants and two polymorphic variants in GJB2 were identified. The two screened GJB6 deletions and the m.1555A>G mutation were not detected. Eight cases (10.6%) were found to have bi-allelic mutations in GJB2 and six (7.9%) were found to have a monoallelic GJB2 mutation. Of the six monoallelic mutations, one (p.R184Q) was a previously reported autosomal dominant variant. The most frequent pathological allele detected in this population was the c.35delG mutation in the GJB2 gene. The p.V27I polymorphic variant was also detected, with an allele frequency of 0.24. All eight probands with GJB2 mutations had symmetric profound deafness, whereas patients without GJB2 mutations had moderate, severe or profound hearing loss. This study shows that GJB2 mutations are an important cause of prelingual deafness in the Mexican population

    Novel EYA1 variants causing Branchio-oto-renal syndrome

    No full text
    Branchio-oto-renal (BOR) syndrome is an autosomal dominant genetic disorder characterized by second branchial arch anomalies, hearing impairment, and renal malformations. Pathogenic mutations have been discovered in several genes such as EYA1, SIX5, and SIX1. However, nearly half of those affected reveal no pathogenic variant by traditional genetic testing. Whole Exome sequencing and/or Sanger sequencing performed in 10 unrelated families from Turkey, Iran, Ecuador, and USA with BOR syndrome in this study. We identified causative DNA variants in six families including novel c.525delT, c.979T > C, and c.1768delG and a previously reported c.1779A > T variants in EYA1. Two large heterozygous deletions involving EYA1 were detected in additional two families. Whole exome sequencing did not reveal a causative variant in the remaining four families. A variety of DNA changes including large deletions underlie BOR syndrome in different populations, which can be detected with comprehensive genetic testing

    Whole-Exome Sequencing Efficiently Detects Rare Mutations in Autosomal Recessive Nonsyndromic Hearing Loss

    Get PDF
    <div><p>Identification of the pathogenic mutations underlying autosomal recessive nonsyndromic hearing loss (ARNSHL) is difficult, since causative mutations in 39 different genes have so far been reported. After excluding mutations in the most common ARNSHL gene, <em>GJB2</em>, via Sanger sequencing, we performed whole-exome sequencing (WES) in 30 individuals from 20 unrelated multiplex consanguineous families with ARNSHL. Agilent SureSelect Human All Exon 50 Mb kits and an Illumina Hiseq2000 instrument were used. An average of 93%, 84% and 73% of bases were covered to 1X, 10X and 20X within the ARNSHL-related coding RefSeq exons, respectively. Uncovered regions with WES included those that are not targeted by the exome capture kit and regions with high GC content. Twelve homozygous mutations in known deafness genes, of which eight are novel, were identified in 12 families: <em>MYO15A</em>-p.Q1425X, -p.S1481P, -p.A1551D; <em>LOXHD1</em>-p.R1494X, -p.E955X; <em>GIPC3</em>-p.H170N; <em>ILDR1</em>-p.Q274X; <em>MYO7A</em>-p.G2163S; <em>TECTA</em>-p.Y1737C; <em>TMC1</em>-p.S530X; <em>TMPRSS3</em>-p.F13Lfs*10; <em>TRIOBP</em>-p.R785Sfs*50. Each mutation was within a homozygous run documented via WES. Sanger sequencing confirmed co-segregation of the mutation with deafness in each family. Four rare heterozygous variants, predicted to be pathogenic, in known deafness genes were detected in 12 families where homozygous causative variants were already identified. Six heterozygous variants that had similar characteristics to those abovementioned variants were present in 15 ethnically-matched individuals with normal hearing. Our results show that rare causative mutations in known ARNSHL genes can be reliably identified via WES. The excess of heterozygous variants should be considered during search for causative mutations in ARNSHL genes, especially in small-sized families.</p> </div
    corecore