300 research outputs found
Exon-intron structure and sequence variation of the calreticulin gene among Rhipicephalus sanguineus group ticks
Background: Calreticulin proteins (CRTs) are important components of tick saliva, which is involved in the blood meal success, pathogen transmission and host allergic responses. The characterization of the genes encoding for salivary proteins, such as CRTs, is pivotal to understand the mechanisms of tick-host interaction during blood meal and to develop tick control strategies based on their inhibition. In hard ticks, crt genes were shown to have only one intron with conserved position among species. In this study we investigated the exon-intron structure and variation of the crt gene in Rhipicephalus spp. ticks in order to assess the crt exon-intron structure and the potential utility of crt gene as a molecular marker.
Methods: We sequenced the exon-intron region of crt gene in ticks belonging to so-called tropical and temperate lineages of Rhipicephalus sanguineus (sensu lato), Rhipicephalus sp. I, Rhipicephalus sp. III, Rhipicephalus sp. IV, R. guilhoni, R. muhsamae and R. turanicus. Genetic divergence and phylogenetic relationships between the sequences obtained were estimated.
Results: All individuals belonging to the tropical lineage of R. sanguineus (s. l.), R. guilhoni, R. muhsamae, R. turanicus, Rhipicephalus sp. III and Rhipicephalus sp. IV analysed showed crt intron-present alleles. However, both crt intron-present and intron-absent alleles were found in Rhipicephalus sp. I and the temperate lineage of R. sanguineus (s. l.), showing the occurrence of an intraspecific intron presence-absence polymorphism. Phylogenetic relationships among the crt intron-present sequences showed distinct lineages for all taxa, with the tropical and temperate lineages of R. sanguineus (s. l.) being more closely related to each other.
Conclusions: We expanded previous studies about the characterization of crt gene in hard ticks. Our results highlighted a previously overlooked variation in the crt structure among Rhipicephalus spp., and among hard ticks in general. Notably, the intron presence/absence polymorphism observed herein can be a candidate study-system to investigate the early stages of intron gain/loss before fixation at species level and some debated questions about intron evolution. Finally, the sequence variation observed supports the suitability of the crt gene for molecular recognition of Rhipicephalus spp. and for phylogenetic studies in association with other markers
Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values
This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur. The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species
APP1 Transcription Is Regulated by Inositol-phosphorylceramide Synthase 1-Diacylglycerol Pathway and Is Controlled by ATF2 Transcription Factor in Cryptococcus neoformans
Inositol-phosphorylceramide synthase 1 (Ipc1) is a fungal-specific enzyme that regulates the level of two bioactive molecules, phytoceramide and diacylglycerol (DAG). In previous studies, we demonstrated that Ipc1 regulates the expression of the antiphagocytic protein 1 (App1), a novel fungal factor involved in pathogenicity of Cryptococcus neoformans. Here, we investigated the molecular mechanism by which Ipc1 regulates App1. To this end, the APP1 promoter was fused to the firefly luciferase gene in the C. neofor-mans GAL7:IPC1 strain, in which the Ipc1 expression can be modulated, and found that the luciferase activity was indeed regulated when Ipc1 was modulated. Next, using the luciferase reporter assay in both C. neoformans wild-type and GAL7:IPC1 strains, we investigated the role of DAG and sphingolipids in the activation of the APP1 promoter and found that treatment with 1,2-dioctanoylglycerol does increase APP1 transcription, whereas treatment with phytosphingosine or ceramides does not. Two putative consensus sequences were found in the APP1 promoter for ATF and AP-2 transcription factors. Mutagenesis analysis of these sequences revealed that they play a key role in the regulation of APP1 transcription: ATF is an activator, whereas AP-2 in a negative regulator. Finally, we identified a putative Atf2 transcription factor, which is required for APP1 transcription and under the control of Ipc1-DAG pathway. These studies provide novel regulatory mechanisms of the sphingolipid pathway involved in the regulation of gene transcription of C. neoformans
Yeasts isolated from cloacal swabs, feces, and eggs of laying hens
Domestic and wild birds may act as carriers of human pathogenic fungi, although the role of laying hens in spreading yeasts has never been investigated. We evaluated the presence of yeasts in the cloaca (Group I, n = 364), feces (Group II, n = 96), and eggs (Group III, n = 270) of laying hens. The occurrence and the population size of yeasts on the eggshell, as well as in the yolks and albumens, were assessed at the oviposition time and during storage of eggs at 22 ± 1°C and 4 ± 1°C. A statistically higher prevalence and population size of yeasts were recorded in Group I (49.7% and 1.3 × 104 cfu/ml) and II (63.8% and 2.8 × 105 cfu/ml) than in Group III (20.7% and 19.9 cfu/ml). Candida catenulata and Candida albicans were the most frequent species isolated. Candida famata and Trichosporon asteroides were isolated only from the eggshells, whereas Candida catenulata was also isolated from yolks and albumens. During storage, the yeast population size on the shell decreased (from 37.5 to 8.5 cfu/ml) in eggs at 22 ± 1°C and increased (from 4.6 to 35.3 cfu/ml) at 4 ± 1°C. The laying hens harbor potentially pathogenic yeasts in their gastrointestinal tract and are prone to disseminating them in the environment through the feces and eggs. Eggshell contamination might occur during the passage through the cloaca or following deposition whereas yolk and albumen contamination might depend on yeast density on eggshell
Sequence based typing of Legionella pneumophila sg 1 isolated in nosocomial acquired infections in Apulia, Southern Italy
Objective. The present report aims to molecularly characterize seven clinical L. pneumophila (L. pn.) sg 1 isolated from noso- comial acquired infections in Apulia region, using the European Working Group on Legionella Infections (EWGLI), sequence- based typing (SBT) and amplified fragment length polymorphism (AFLP) protocols and to compare the identified sequence types (STs) with those available in the EWGLI database.
Methods. In the period, January 2000 - December 2012, 151 cases (136 of community and 15 of nosocomial origin) of Legion- naires? disease were notified to the Regional Center for Epide- miology. With regard to nosocomial cases, 8 were confirmed by the isolation of Legionella spp. from respiratory secretions. These clinical isolates were characterized by amplified fragment length polymorphism (AFLP) and sequence-based typing (SBT), using the EWGLI standardized protocol.
Results. The clinical isolates belong to ST42, ST23 and ST1. The AFLP confirms the SBT results. Comparing the STs herein detected with those already in the EWGLI SBT database, the 3 STs are frequent in other European countries.
Conclusions. The molecular analysis demonstrates that the 3 STs are the most frequent in Italy and in Europe, supporting the hypothesis that some specific L. pn. sg 1 clones have gained widespread dissemination probably due to a common ecological niche. Further researches are required to investigate the potential changing incidence of STs and the fitness of emerging strains or clonal groups in environmental strains
Efficacy of afoxolaner (NexGard®) in preventing the transmission of Leishmania infantum and Dirofilaria immitis to sheltered dogs in a highly endemic area
Background: Leishmania infantum and Dirofilaria immitis are among the most important canine vector-borne pathogens (CVBPs) of zoonotic concern in Europe. In endemic areas for both of these CVBPs, the use of systemic ectoparasiticides, such as afoxolaner (NexGard®; Boehringer Ingelheim Animal Health), may have the potential for controlling these infections. The aim of this study was to assess, for the first time, the insecticidal efficacy of NexGard® in decreasing the transmission of D. immitis and L. infantum to sheltered dogs living in a hyperendemic area, compared to the year before treatment, as well as its impact on the abundance of mosquito and sand fly populations. Methods: All dogs (n = 179) enrolled in the study were divided into two groups based on their infection status at enrollment: a non-infected group (G1) and an infected group (G2; infected with D. immitis, L. infantum or both). The study was conducted from March 2020 to March 2021. In order to exclude all animals infected with L. infantum and D. immitis before March 2020 (sampling time: T0), dogs in G1 were sampled in June (T1; i.e. T0 + 90 days) and in October 2020 (T2; i.e. T0 + 210 days). From March to September 2020, all animals (G1 and G2) were weighed and treated monthly with NexGard®. Animals in G1 were tested for the last time in March 2021 (T3; i.e. T0 + 330 days) for assessing post-treatment incidence rate of infection and prevention efficacy. Results: The post-treatment incidence of D. immitis was 3.7% (1/27; 95% confidence interval [CI]: 0.2–18.1) and that of L. infantum was 3.6% (3/83; 95% CI: 1.0–10.1). Considering the annual incidence in 2019 and 2020, the protective efficacy against D. immitis and L. infantum infections was 94.2 and 64%, respectively. Of the female mosquitoes collected (n = 146), only one pool out of 50 tested positive for D. immitis DNA, whereas out of 1252 female Sergentomya minuta specimens collected, only four tested positive for L. infantum (0.3%). Conclusions: Afoxolaner is efficacious in decreasing the rate of transmission of both D. immitis and L. infantum; however, comparison of the pre- and post-treatment period demonstrated that there was a significant difference only in the seasonal incidences of D. immitis infection. Preventive measures are recommended throughout the year in endemic areas to reduce the risk of pathogen transmission to animals and humans. Graphical abstract: [Figure not available: see fulltext.]
Invasive fungal infections in Neonatal Intensive Care Units of Southern Italy: a multicentre regional active surveillance (AURORA Project)
Introduction. During the past years invasive fungal infections (IFIs) have become an increasingly important problem in infants hospitalized in the Neonatal Intensive Care Unit (NICU). Candida species is the third most-common agent of late-onset infections in critically ill neonates, with an estimated incidence of 2.6-10% in very low birth weight and 5.5-20% in extremely low birth weight infants.
The aim of this observational study is to evaluate the epidemiology of IFIs among infants admitted to NICUs of one Italian region by a multicenter surveillance (Aurora Project).
Methods. The IFIs surveillance was carried out prospectively in Apulia (Southern Italy) between February 2007 and August 2008. This report focuses on the results from 6 enrolled NICUs.
Results. Twenty-one neonates developed IFIs: the overall incidence was 1.3% and crude mortality was 23.8%. Infants weighing ? 1500g (4.3%) showed a significantly higher incidence
than those ? 2500g (0.2%). C.parapsilosis (61.9%) was the most frequent isolated species. The main potential risk factors were having a central venous catheter placed, length of stay in NICU > 7 days and total parenteral nutrition for > 5 days. The (1,3)-Ã-D glucan (BDG), mannan antigens and anti-Candida antibodies? evaluation was performed in 7 neonates. All neonates were positive to the BDG; the mannan antigen result was positive in 5 newborns, the anti-mannan antibodies were always negative. All isolates were amphotericin B and fluconazole-susceptible.
Discussion. This first prospective study on neonatal fungal infection in one Italian region gives evidence of a preponderance of non-albicans Candida spp and indicates potential utility of BDG
as an adjunct diagnostic test
Vector-borne pathogens of zoonotic concern in hunting dogs of southern Italy
Dogs are commonly exposed to vector-borne pathogens (VBPs), yet few data are available on hunting dogs, which are often at high risk of infection due to their involvement in field activities. To investigate the occurrence of VBPs and evaluate the relative performance of different diagnostic tools, blood and serum samples were collected from hunting dogs (n = 1,433) in rural areas of southern Italy. All samples were tested by Knott's technique for filarioids, serologically (SNAP® 4Dx® Plus) for Anaplasma spp., Borrelia burgdorferi sensu lato, Dirofilaria immitis and Ehrlichia spp. and molecularly (qPCR) for all except B. burgdorferi of the above pathogens plus Babesia spp. and Leishmania infantum. Logistic regression was run to evaluate the statistical associations between the risk of VBP infection and independent variables (such as geographic area of provenience, age class and sex) and K-Cohen formula for assessing the concordance among diagnostic tests. Overall, out of 321 dogs (22.4%) positive to at least one VBP, 28 (1.9%) were infected by filarial species at the Knott's technique. In particular, Acanthocheilonema reconditum was the most prevalent (1.6%), followed by D. immitis (0.2%) and Dirofilaria repens (0.1%). One hundred forty (9.8%) and 231 (16.1%) dogs scored positive to VBPs by serological and molecular methods, respectively. The most prevalent pathogens detected were Ehrlichia spp. (7.3%) with SNAP® 4Dx® Plus, and A. reconditum (7.7%) by qPCR. Statistics revealed a significant association (p < 0.001) between A. reconditum infestation and both Ehrlichia spp. seropositivity and geographical origin of dogs. An agreement of 99.9%, 94.0% and 95.7% for Knott - SNAP® 4Dx® Plus, Knott - qPCR and SNAP® 4Dx® Plus - qPCR for D. immitis was found, respectively. Data demonstrate a high prevalence of VBPs in hunting dogs, indicating that this group of animals is largely exposed to several arthropod vector species and suggesting the transmission risk of pathogens to humans in rural areas of southern Italy. A multi-diagnostic approach and a deeper cooperation among healthcare and stakeholders are required to prevent VBP infections to animals and humans
Leishmania infantum and Dirofilaria immitis infections in Italy, 2009-2019: Changing distribution patterns
Background: For long time, canine leishmaniosis (CanL) was considered endemic in the southern, central, and insular regions of Italy, whereas heartworm disease (HW) caused by Dirofilaria immitis was considered endemic in the northern region and in the swampy Po Valley. Following the reports of new foci of both diseases, in this study we update the distribution patterns and occurrence of new foci of CanL and HW discussing the main drivers for the changes in the epidemiology of these two important zoonotic canine vector-borne diseases. Methods: Based on the statistical analyses of serological assays (n = 90,633) on L. infantum exposure and D. immitis infection performed by two reference diagnostic centres in Italy over a ten-year period (2009-2019) irrespective of the anamnesis of dogs. The distribution patterns of both parasites are herein presented along with the occurrence of new foci. Results: Results highlighted the changing distribution patterns of L. infantum vs D. immitis infection in Italy. CanL is endemic in some areas of northern regions and HW has endemic foci in central and southern regions and islands. Significant differences in L. infantum exposure and HW infection prevalence among the study macroareas were detected. The overall results of the positive tested samples were 28.2% in southern Italy and islands, 29.6% in central Italy and 21.6% in northern Italy for L. infantum and 2.83% in northern Italy, 7.75% in central Italy and 4.97% in southern Italy and islands for HW. HW positivity significantly varied over years (χ 2 = 108.401, df = 10, P < 0.0001), gradually increasing from 0.77% in 2009 to 8.47% in 2016-2017. Conclusions: New potential epidemiological scenarios are discussed according to a range of factors (e.g. environmental modifications, occurrence of competent insect vectors, transportation of infected animals to non-endemic areas, chemoprophylaxis or vector preventative measures), which may affect the current distribution. Overall, the results advocate for epidemiological surveillance programmes, more focussed preventative and control measures even in areas where few or no cases of both diseases have been diagnosed.[Figure not available: see fulltext.
- …