18 research outputs found

    Brownian motion of graphene.

    Get PDF
    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules

    Intelligent non-colorimetric indicators for the perishable supply chain by non-wovens with photo-programmed thermal response

    Get PDF
    Spoiled perishable products, such as food and drugs exposed to inappropriate temperature, cause million illnesses every year. Risks range from intoxication due to pathogen-contaminated edibles, to suboptimal potency of temperature-sensitive vaccines. High-performance and low-cost indicators are needed, based on conformable materials whose properties change continuously and irreversibly depending on the experienced time-temperature profile. However, these systems can be limited by unclear reading, especially for colour-blind people, and are often difficult to be encoded with a tailored response to detect excess temperature over varying temporal profiles. Here we report on optically-programmed, non-colorimetric indicators based on nano-textured non-wovens encoded by their cross-linking degree. This combination allows a desired time-temperature response to be achieved, to address different perishable products. The devices operate by visual contrast with ambient light, which is explained by backscattering calculations for the complex fibrous material. Optical nanomaterials with photo-encoded thermal properties might establish new design rules for intelligent labels

    Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids

    No full text
    We investigate experimentally and theoretically optical trapping of metal nanoparticles and aggregates. In particular, we show how light forces can be used to trap individual gold nanoaggregates of controlled size and structure obtained by laser ablation synthesis in solution. Due to their surface charge, no agglomeration of isolated nanoparticles was observed during trapping experiments and reliable optical force measurements of isolated and aggregated nanoparticles was possible through an analysis of the Brownian motion in the trap. We show how the field-enhancement properties of these nanostructures enables surface-enhanced Raman spectroscopy of molecules adsorbed on aggregates optically trapped in a Raman tweezers setup. We finally discuss calculations of extinction and optical forces based on a full electromagnetic scattering theory for aggregated gold nanostructures where the occurrence of plasmon resonances at longer wavelength play a crucial role in the enhancement of the trapping forces

    Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost in Patients With Spinal Metastases

    No full text
    Stereotactic body radiation therapy in patients with spine metastases maximizes local tumor control and preserves neurologic function. A novel approach could be the use of stereotactic body radiation therapy with simultaneous integrated boost delivering modality. The aim of the present study is to report our experience in the treatment of spine metastases using a frameless radiosurgery system delivering stereotactic body radiation therapy-simultaneous integrated boost technique. The primary endpoints were the pain control and the time to local progression; the secondary ones were the overall survival and toxicity. A total of 20 patients with spine metastases and 22 metastatic sites were treated in our center with stereotactic body radiation therapy-simultaneous integrated boost between December 2007 and July 2018. Stereotactic body radiation therapy-simultaneous integrated boost treatments were delivered doses of 8 to 10 Gy in 1 fraction to isodose line of 50%. The median follow-up was 35 months (range: 12-110). The median time to local progression for all patients was not reached and the actuarial 1-, 2-, and 3-years local free progression rate was 86.36%. In 17 of 20 patients, a complete pain remission was observed and 3 of 20 patients had a partial pain remission (complete pain remission + partial pain remission: 100%). The median overall survival was 38 months (range 12-83). None of the patients experienced neither radiation adverse events (grade 1-4) nor reported pain flair reaction. None of the patients included in our series experienced vertebral compression fracture. Spine radiosurgery with stereotactic body radiation therapy-simultaneous integrated boost is safe. The use of this modality in spine metastases patients provides an excellent local control

    COVID-19 outbreak and cancer radiotherapy disruption in Italy: Survey endorsed by the Italian Association of Radiotherapy and Clinical Oncology (AIRO)

    No full text
    Italy experienced one of the world's deadliest COVID-19 outbreaks and healthcare systems had to instantly reorganise activity. The Italian Radiation Oncology Departments adapted numerous solutions to minimize the disruptions. Information technologies, treatment prioritization and implementation of hypofractionation and protection procedures allowed balancing between cancer patient care and patient/healthcare workers safety
    corecore