7 research outputs found

    West Nile Virus lineage 1 in Italy: newly introduced or a re-occurrence of a previously circulating strain?

    Get PDF
    In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008–2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory activ

    West Nile Virus lineage 2 overwintering in Italy

    Get PDF
    In January 2022, West Nile virus (WNV) lineage 2 (L2) was detected in an adult female goshawk rescued near Perugia in the region of Umbria (Italy). The animal showed neurological symptoms and died 15 days after its recovery in a wildlife rescue center. This was the second case of WNV infection recorded in birds in the Umbria region during the cold season, when mosquitoes, the main WNV vectors, are usually not active. According to the National Surveillance Plan, the Umbria region is included amongst the WNV low-risk areas. The necropsy evidenced generalized pallor of the mucous membranes, mild splenomegaly, and cerebral edema. WNV L2 was detected in the brain, heart, kidney, and spleen homogenate using specific RT-PCR. Subsequently, the extracted viral RNA was sequenced. A Bayesian phylogenetic analysis performed through a maximum-likelihood tree showed that the genome sequence clustered with the Italian strains within the European WNV strains among the central-southern European WNV L2 clade. These results, on the one hand, confirmed that the WNV L2 strains circulating in Italy are genetically stable and, on the other hand, evidenced a continuous WNV circulation in Italy throughout the year. In this report case, a bird-to-bird WNV transmission was suggested to support the virus overwintering. The potential transmission through the oral route in a predatory bird may explain the relatively rapid spread of WNV, as well as other flaviviruses characterized by similar transmission patterns. However, rodent-to-bird transmission or mosquito-to-bird transmission cannot be excluded, and further research is needed to better understand WNV transmission routes during the winter season in Ital

    West Nile and Usutu Virus Introduction via Migratory Birds: A Retrospective Analysis in Italy

    No full text
    The actual contribution of migratory birds in spreading West Nile (WNV) and Usutu virus (USUV) across Europe and from Africa to old countries is still controversial. In this study, we reported the results of molecular and serological surveys on migrating birds sampled during peaks of spring and autumn migration at 11 Italian sites located along important flyways, from 2012 to 2014. A total of 1335 specimens made of individual or pooled sera, and organs from 275 dead birds were tested for WNV and USUV RNA by real time PCR (RT-PCR). Furthermore, sera were tested by serum neutralization assay for detecting WNV and USUV neutralizing antibodies. Molecular tests detected WNV lineage 2 RNA in a pool made of three Song Thrush (Turdus philomelos) sera sampled in autumn, and lineage 1 in kidneys of six trans-Saharan birds sampled in spring. Neutralizing antibodies against WNV and USUV were found in 5.80% (n = 72; 17 bird species) and 0.32% (n = 4; 4 bird species) of the tested sera, respectively. Our results do not exclude the role of migratory birds as potential spreaders of WNV and USUV from Africa and Central Europe to Mediterranean areas and highlight the importance of a more extensive active surveillance of zoonotic viruses

    Rift Valley fever virus: a serological survey in Libyan ruminants

    Get PDF
    A serological survey was carried out in Libya to investigate the circulation of Rift Valley fever virus (RVFV) among domestic ruminants. A total of 857 serum samples were collected from year 2015 to 2016 in eleven provinces of Libya belonging to five branches of the country. Samples were tested for RVFV antibodies using a competitive Enzyme-Linked Immunosorbent Assay (c-ELISA). Antibodies specific for RVFV were not detected in any of the 857 samples. However, a statistical analysis was carried out to assess the maximum expected number of infected animals and the maximum expected prevalence of RVFV among Libyan ruminants’ populations according to the sampled population. The overall maximum expected prevalence was estimated to be 1.8% for cattle and 0.4% for small ruminants. Results seem to exclude the circulation of RVFV, however, a surveillance plan should be implemented in areas at risk of RVFV introduction

    Epidemiological and Evolutionary Analysis of West Nile Virus Lineage 2 in Italy

    Get PDF
    West Nile virus (WNV) is a mosquito-borne virus potentially causing serious illness in humans and other animals. Since 2004, several studies have highlighted the progressive spread of WNV Lineage 2 (L2) in Europe, with Italy being one of the countries with the highest number of cases of West Nile disease reported. In this paper, we give an overview of the epidemiological and genetic features characterising the spread and evolution of WNV L2 in Italy, leveraging data obtained from national surveillance activities between 2011 and 2021, including 46 newly assembled genomes that were analysed under both phylogeographic and phylodynamic frameworks. In addition, to better understand the seasonal patterns of the virus, we used a machine learning model predicting areas at high-risk of WNV spread. Our results show a progressive increase in WNV L2 in Italy, clarifying the dynamics of interregional circulation, with no significant introductions from other countries in recent years. Moreover, the predicting model identified the presence of suitable conditions for the 2022 earlier and wider spread of WNV in Italy, underlining the importance of using quantitative models for early warning detection of WNV outbreaks. Taken together, these findings can be used as a reference to develop new strategies to mitigate the impact of the pathogen on human and other animal health in endemic areas and new regions

    Rapid increase in neuroinvasive West Nile virus infections in humans, Italy, July 2022

    No full text
    As in 2018, when a large West Nile virus (WNV) epidemic occurred, the 2022 vector season in Italy was marked by an early onset of WNV circulation in mosquitoes and birds. Human infections were limited until early July, when we observed a rapid increase in the number of cases. We describe the epidemiology of human infections and animal and vector surveillance for WNV and compare the more consolidated data of June and July 2022 with the same period in 2018
    corecore