1,873 research outputs found

    A numerical and experimental study on cavitation in positive displacement pumps and its application in valve design optimization

    Get PDF
    Appendix of "Technical sheets and drawings" appears in the online version only.This thesis was previously held under moratorium from 26/11/2015 to 15/06/2021.A comprehensive and transient Computational Fluid Dynamic model of a Positive Displacement reciprocating pump in cavitating condition was developed in order to study the main features and the causes of cavitation in this kind of device. Several sensitivity analyses were also carried out in order to identify the most influential parameters on cavitation; the design of the inlet valve as well as the operating conditions were found to be the main parameters playing an important role in cavitation. To complete the numerical study, a sensitivity analysis on the air content in the water was carried out.;This highlighted the importance of the physical properties of the working liquid in influencing the vapour generation during cavitation. The second part of the project was dedicated to the experimental analysis; a test rig replicating the numerical model was designed and built. The experimental tests were carried out and the results were compared to the numerical data obtained in the previous part. The comparison revealed a reasonable accuracy as well as good consistency although numerical problems were found in the way the cavitation model accounted for the influence of the air dissolved in the water which was overestimated. The validated numerical model was utilised to modify the design of the inlet valve.;A new model of the valve was presented and described, it was demonstrated capable of minimising the vapour generation under the same operating condition with respect to the initial valve design. The modification proposed was implemented in the design of new valves which are already being manufactured and tested in the field, they will be introduced into the market afterwards. The project is the demonstration that numerical tools based on CFD are nowadays ready to effectively support designers and industries in bringing down the cost of the engineering process of new and more efficient products.A comprehensive and transient Computational Fluid Dynamic model of a Positive Displacement reciprocating pump in cavitating condition was developed in order to study the main features and the causes of cavitation in this kind of device. Several sensitivity analyses were also carried out in order to identify the most influential parameters on cavitation; the design of the inlet valve as well as the operating conditions were found to be the main parameters playing an important role in cavitation. To complete the numerical study, a sensitivity analysis on the air content in the water was carried out.;This highlighted the importance of the physical properties of the working liquid in influencing the vapour generation during cavitation. The second part of the project was dedicated to the experimental analysis; a test rig replicating the numerical model was designed and built. The experimental tests were carried out and the results were compared to the numerical data obtained in the previous part. The comparison revealed a reasonable accuracy as well as good consistency although numerical problems were found in the way the cavitation model accounted for the influence of the air dissolved in the water which was overestimated. The validated numerical model was utilised to modify the design of the inlet valve.;A new model of the valve was presented and described, it was demonstrated capable of minimising the vapour generation under the same operating condition with respect to the initial valve design. The modification proposed was implemented in the design of new valves which are already being manufactured and tested in the field, they will be introduced into the market afterwards. The project is the demonstration that numerical tools based on CFD are nowadays ready to effectively support designers and industries in bringing down the cost of the engineering process of new and more efficient products

    The pain matrix reloaded: a salience detection system for the body

    Get PDF
    Neuroimaging and neurophysiological studies have shown that nociceptive stimuli elia salience detection system for the bodycit responses in an extensive cortical network including somatosensory, insular and cingulate areas, as well as frontal and parietal areas. This network, often referred to as the "pain matrix", is viewed as representing the activity by which the intensity and unpleasantness of the perception elicited by a nociceptive stimulus are represented. However, recent experiments have reported (i) that pain intensity can be dissociated from the magnitude of responses in the "pain matrix", (ii) that the responses in the "pain matrix" are strongly influenced by the context within which the nociceptive stimuli appear, and (iii) that non-nociceptive stimuli can elicit cortical responses with a spatial configuration similar to that of the "pain matrix". For these reasons, we propose an alternative view of the functional significance of this cortical network, in which it reflects a system involved in detecting, orienting attention towards, and reacting to the occurrence of salient sensory events. This cortical network might represent a basic mechanism through which significant events for the body's integrity are detected, regardless of the sensory channel through which these events are conveyed. This function would involve the construction of a multimodal cortical representation of the body and nearby space. Under the assumption that this network acts as a defensive system signaling potentially damaging threats for the body, emphasis is no longer on the quality of the sensation elicited by noxious stimuli but on the action prompted by the occurrence of potential threats

    Fine-grained nociceptive maps in primary somatosensory cortex

    Get PDF
    Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded fMRI analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the timecourse and the spatial pattern of plastic changes in cortical organization involved in chronic pain

    Linking pain and the body: neural correlates of visually induced analgesia

    Get PDF
    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this “visually induced analgesia” using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called “pain matrix”), and (2) an extensive set of posterior brain areas activated by the visual perception of the body (“visual body network”). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain

    Gravitational cues modulate the shape of defensive peripersonal space

    Get PDF
    The potential damage caused by an environmental threat increases with proximity to the body, so animals perform more effective and stronger defensive responses when threatening stimuli occur nearby the body, in a region termed the defensive peripersonal space (DPPS). We recently characterized the fine-grained geometry of the face's DPPS by recording the enhancement of the blink reflex elicited by electrical stimulation of the median nerve (hand-blink reflex, HBR), when the hand is closer to the face. The resulting DPPS has the shape of a bubble, elongated asymmetrically along the rostro-caudal axis, extending further above eye-level. We hypothesized that this vertical asymmetry is determined by gravitational cues: the probability that a threat will hit the body is higher when it comes from above. By systematically altering body posture, we show that the extent of DPPS asymmetry is defined in an earth-centred coordinate frame. This observation suggests the brain takes gravitational cues to automatically update threat value in an adaptive mechanism that accounts for the simple fact that objects fall down

    National Combustion Code Validated Against Lean Direct Injection Flow Field Data

    Get PDF
    Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics

    Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates.

    Get PDF
    Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site

    Hyperscanning Alone Cannot Prove Causality. Multibrain Stimulation Can

    Get PDF

    Towards a unified neural mechanism for reactive adaptive behaviour

    Get PDF
    Surviving in natural environments requires animals to sense sudden events and swiftly adapt behaviour accordingly. The study of such Reactive Adaptive Behaviour (RAB) has been central to a number of research streams, all orbiting around movement science but progressing in parallel, with little cross-field fertilization. We first provide a concise review of these research streams, independently describing four types of RAB: (1) cortico-muscular resonance, (2) stimulus locked response, (3) online motor correction and (4) action stopping. We then highlight remarkable similarities across these four RABs, suggesting that they might be subserved by the same neural mechanism, and propose directions for future research on this topic
    • …
    corecore