44 research outputs found

    Alternans in Genetically Modified Langendorff-Perfused Murine Hearts Modeling Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    The relationship between alternans and arrhythmogenicity was studied in genetically modified murine hearts modeling catecholaminergic polymorphic ventricular tachycardia (CPVT) during Langendorff perfusion, before and after treatment with catecholamines and a β-adrenergic antagonist. Heterozygous (RyR2p/s) and homozygous (RyR2s/s) RyR2-P2328S hearts, and wild-type (WT) controls, were studied before and after treatment with epinephrine (100 nM and 1 μM) and propranolol (100 nM). Monophasic action potential recordings demonstrated significantly greater incidences of arrhythmia in RyR2p/s and RyR2s/s hearts as compared to WTs. Arrhythmogenicity in RyR2s/s hearts was associated with alternans, particularly at short baseline cycle lengths. Both phenomena were significantly accentuated by treatment with epinephrine and significantly diminished by treatment with propranolol, in full agreement with clinical expectations. These changes took place, however, despite an absence of changes in mean action potential durations, ventricular effective refractory periods or restitution curve characteristics. Furthermore pooled data from all hearts in which arrhythmia occurred demonstrated significantly greater alternans magnitudes, but similar restitution curve slopes, to hearts that did not demonstrate arrhythmia. These findings thus further validate the RyR2-P2328S murine heart as a model for human CPVT, confirming an alternans phenotype in common with murine genetic models of the Brugada syndrome and the congenital long-QT syndrome type 3. In contrast to these latter similarities, however, this report demonstrates the dissociation of alternans from changes in the properties of restitution curves for the first time in a murine model of a human arrhythmic syndrome

    Criteria for arrhythmogenicity in genetically-modified Langendorff-perfused murine hearts modelling the congenital long QT syndrome type 3 and the Brugada syndrome

    Get PDF
    The experiments investigated the applicability of two established criteria for arrhythmogenicity in Scn5a+/Δ and Scn5a+/− murine hearts modelling the congenital long QT syndrome type 3 (LQT3) and the Brugada syndrome (BrS). Monophasic action potentials (APs) recorded during extrasystolic stimulation procedures from Langendorff-perfused control hearts and hearts treated with flecainide (1 μM) or quinidine (1 or 10 μM) demonstrated that both agents were pro-arrhythmic in wild-type (WT) hearts, quinidine was pro-arrhythmic in Scn5a+/Δ hearts, and that flecainide was pro-arrhythmic whereas quinidine was anti-arrhythmic in Scn5a+/− hearts, confirming clinical findings. Statistical analysis confirmed a quadratic relationship between epicardial and endocardial AP durations (APDs) in WT control hearts. However, comparisons between plots of epicardial against endocardial APDs and this reference curve failed to correlate with arrhythmogenicity. Restitution curves, relating APD to diastolic interval (DI), were then constructed for the first time in a murine system and mono-exponential growth functions fitted to these curves. Significant (P < 0.05) alterations in the DI at which slopes equalled unity, an established indicator of arrhythmogenicity, now successfully predicted the presence or absence of arrhythmogenicity in all cases. We thus associate changes in the slopes of restitution curves with arrhythmogenicity in models of LQT3 and BrS

    Fuzzy logic modelling of snow leopard populations in response to threats from climate change

    Get PDF
    The snow leopard population in Kazakhstan represents a small but important component of the species range, making up around 2.7% of the global range, of which 18,673 km2 lies within protected areas. The most recent population estimate, by Jackson et al. (2008), suggests that there are around 180-200 individuals. Prior to this study there were no reliable estimates of snow leopard numbers in Almaty State Nature Reserve, one of the only two stable populations of snow leopards in Kazakhstan. In total 40 camera traps were deployed for a total of 5152 traps nights and yielded 50 independent capture events of snow leopards (with between 1 and 10 images per event), 275 capture events of primary prey and 68 capture events of secondary prey. The study capture rate of 0.97 independent capture events per 100 trap nights is at the higher end of the range experienced by other studies (see McCarthy et al., 2008) and mark-recapture modelling estimated 11-18 individual snow leopards in the study area which suggests density between 4.4 and 7.2 individuals per 100km2. Our population estimate for the whole reserve is 39.6 individuals, with a standard error of 5.44536 individuals and a 95% confidence interval of 39 to 64. Analysis of movement patterns suggests that individuals frequently crossed valley bottoms and used densely forested habitat in winter, which may indicated prey switching from ibex to forest ungulates. The University of Cumbria has developed a fuzzy logic model which aggregates a wide range of socio-economic and ecological data and provides a tool that can be used to inform the sustainable natural resource and landscape management decision-making process. Our model predicts the consistent negative impact of climate change (warming) at elevations below the tree line; this is particularly significant as the potential positive impacts for snow leopards at high elevation are slower to kick in thereby increasing the habitat squeeze associated with climate change in mountain habitats

    Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    Alternans and arrhythmogenicity were studied in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced at high rates. Epicardial and endocardial monophasic action potentials were recorded and durations quantified at 90% repolarization. Alternans and arrhythmia occurred in hypokalaemic, but not normokalaemic (5.2 mM K+) hearts (P < 0.01): this was prevented by treatment with lidocaine (10 μM, P < 0.01). Fourier analysis then confirmed transition from monomorphic to polymorphic waveforms for the first time in the murine heart. Alternans and arrhythmia were associated with increases in the slopes of restitution curves, obtained for the first time in the murine heart, while the anti-arrhythmic effect of lidocaine was associated with decreased slopes. Thus, hypokalaemia significantly increased (P < 0.05) maximal gradients (from 0.55 ± 0.14 to 2.35 ± 0.67 in the epicardium and from 0.67 ± 0.13 to 1.87 ± 0.28 in the endocardium) and critical diastolic intervals (DIs) at which gradients equalled unity (from −2.14 ± 0.52 ms to 50.93 ± 14.45 ms in the epicardium and from 8.14 ± 1.49 ms to 44.64 ± 5 ms in the endocardium). While treatment of normokalaemic hearts with lidocaine had no significant effect (P > 0.05) on either maximal gradients (0.78 ± 0.27 in the epicardium and 0.83 ± 0.45 in the endocardium) or critical DIs (6.06 ± 2.10 ms and 7.04 ± 3.82 ms in the endocardium), treatment of hypokalaemic hearts with lidocaine reduced (P < 0.05) both these parameters (1.05 ± 0.30 in the epicardium and 0.89 ± 0.36 in the endocardium and 30.38 ± 8.88 ms in the epicardium and 31.65 ± 4.78 ms in the endocardium, respectively). We thus demonstrate that alternans contributes a dynamic component to arrhythmic substrate during hypokalaemia, that restitution may furnish an underlying mechanism and that these phenomena are abolished by lidocaine, both recapitulating and clarifying clinical findings

    Atrial arrhythmogenesis in wild-type and Scn5a+/Δ murine hearts modelling LQT3 syndrome

    Get PDF
    Long QT(3) (LQT3) syndrome is associated with abnormal repolarisation kinetics, prolonged action potential durations (APD) and QT intervals and may lead to life-threatening ventricular arrhythmias. However, there have been few physiological studies of its effects on atrial electrophysiology. Programmed electrical stimulation and burst pacing induced atrial arrhythmic episodes in 16 out of 16 (16/16) wild-type (WT) and 7/16 genetically modified Scn5a+/Δ (KPQ) Langendorff-perfused murine hearts modelling LQT3 (P < 0.001 for both), and in 14/16 WT and 1/16 KPQ hearts (P < 0.001 for both; Fisher’s exact test), respectively. The arrhythmogenic WT hearts had significantly larger positive critical intervals (CI), given by the difference between atrial effective refractory periods (AERPs) and action potential durations at 90% recovery (APD90), compared to KPQ hearts (8.1 and 3.2 ms, respectively, P < 0.001). Flecainide prevented atrial arrhythmias in all arrhythmogenic WT (P < 0.001) and KPQ hearts (P < 0.05). It prolonged the AERP to a larger extent than it did the APD90 in both WT and KPQ groups, giving negative CIs. Quinidine similarly exerted anti-arrhythmic effects, prolonged AERP over corresponding APD90 in both WT and KPQ groups. These findings, thus, demonstrate, for the first time, inhibitory effects of the KPQ mutation on atrial arrhythmogenesis and its modification by flecainide and quinidine. They attribute these findings to differences in the CI between WT and mutant hearts, in the presence or absence of these drugs. Thus, prolongation of APD90 over AERP gave positive CI values and increased atrial arrhythmogenicity whereas lengthening of AERP over APD90 reduced such CI values and produced the opposite effect

    The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts

    Get PDF
    The clinical effects of hypokalemia including action potential prolongation and arrhythmogenicity suppressible by lidocaine were reproduced in hypokalemic (3.0 mM K(+)) Langendorff-perfused murine hearts before and after exposure to lidocaine (10 μM). Novel limiting criteria for local and transmural, epicardial, and endocardial re-excitation involving action potential duration (at 90% repolarization, APD(90)), ventricular effective refractory period (VERP), and transmural conduction time (Δlatency), where appropriate, were applied to normokalemic (5.2 mM K(+)) and hypokalemic hearts. Hypokalemia increased epicardial APD(90) from 46.6 ± 1.2 to 53.1 ± 0.7 ms yet decreased epicardial VERP from 41 ± 4 to 29 ± 1 ms, left endocardial APD(90) unchanged (58.2 ± 3.7 to 56.9 ± 4.0 ms) yet decreased endocardial VERP from 48 ± 4 to 29 ± 2 ms, and left Δlatency unchanged (1.6 ± 1.4 to 1.1 ± 1.1 ms; eight normokalemic and five hypokalemic hearts). These findings precisely matched computational predictions based on previous reports of altered ion channel gating and membrane hyperpolarization. Hypokalemia thus shifted all re-excitation criteria in the positive direction. In contrast, hypokalemia spared epicardial APD(90) (54.8 ± 2.7 to 60.6 ± 2.7 ms), epicardial VERP (84 ± 5 to 81 ± 7 ms), endocardial APD(90) (56.6 ± 4.2 to 63.7 ± 6.4 ms), endocardial VERP (80 ± 2 to 84 ± 4 ms), and Δlatency (12.5 ± 6.2 to 7.6 ± 3.4 ms; five hearts in each case) in lidocaine-treated hearts. Exposure to lidocaine thus consistently shifted all re-excitation criteria in the negative direction, again precisely agreeing with the arrhythmogenic findings. In contrast, established analyses invoking transmural dispersion of repolarization failed to account for any of these findings. We thus establish novel, more general, criteria predictive of arrhythmogenicity that may be particularly useful where APD(90) might diverge sharply from VERP

    A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    The clinically established proarrhythmic effect of bradycardia and antiarrhythmic effect of lidocaine (10 μM) were reproduced in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced over a range (80–180 ms) of baseline cycle lengths (BCLs). Action potential durations (at 90% repolarization, APD90s), transmural conduction times and ventricular effective refractory periods (VERPs) were then determined from monophasic action potential records obtained during a programmed electrical stimulation procedure in which extrasystolic stimuli were interposed following regular stimuli at successively decreasing coupling intervals. A novel graphical analysis of epicardial and endocardial, local and transmural relationships between APD90, corrected for transmural conduction time where appropriate, and VERP yielded predictions in precise agreement with the arrhythmogenic findings obtained over the entire range of BCLs studied. Thus, in normokalaemic (5.2 mM K+) hearts a statistical analysis confirmed that all four relationships were described by straight lines of gradients not significantly (P > 0.05) different from unity that passed through the origin and thus subtended constant critical angles, θ with the abscissa (45.8° ± 0.9°, 46.6° ± 0.5°, 47.6° ± 0.5° and 44.9° ± 0.8°, respectively). Hypokalaemia shifted all points to the left of these reference lines, significantly (P < 0.05) increasing θ at BCLs of 80–120 ms where arrhythmic activity was not observed (∼63°, ∼54°, ∼55° and ∼58°, respectively) and further significantly (P < 0.05) increasing θ at BCLs of 140–180 ms where arrhythmic activity was observed (∼68°, ∼60°, ∼61° and ∼65°, respectively). In contrast, the antiarrhythmic effect of lidocaine treatment was accompanied by a significant (P < 0.05) disruption of this linear relationship and decreases in θ in both normokalaemic (∼40°, ∼33°, ∼39° and ∼41°, respectively) and hypokalaemic (∼40°, ∼44°, ∼50° and ∼48°, respectively) hearts. This extended a previous approach that had correlated alterations in transmural repolarization gradients with arrhythmogenicity in murine models of the congenital long QT syndrome type 3 and hypokalaemia at a single BCL. Thus, the analysis in terms of APD90 and VERP provided a more sensitive indication of the effect of lidocaine than one only considering transmural repolarization gradients and may be particularly applicable in physiological and pharmacological situations in which these parameters diverge

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective substudy (BARNARDS)

    Get PDF
    Background Sepsis is a major contributor to neonatal mortality, particularly in low-income and middle-income countries (LMICs). WHO advocates ampicillin–gentamicin as first-line therapy for the management of neonatal sepsis. In the BARNARDS observational cohort study of neonatal sepsis and antimicrobial resistance in LMICs, common sepsis pathogens were characterised via whole genome sequencing (WGS) and antimicrobial resistance profiles. In this substudy of BARNARDS, we aimed to assess the use and efficacy of empirical antibiotic therapies commonly used in LMICs for neonatal sepsis. Methods In BARNARDS, consenting mother–neonates aged 0–60 days dyads were enrolled on delivery or neonatal presentation with suspected sepsis at 12 BARNARDS clinical sites in Bangladesh, Ethiopia, India, Pakistan, Nigeria, Rwanda, and South Africa. Stillborn babies were excluded from the study. Blood samples were collected from neonates presenting with clinical signs of sepsis, and WGS and minimum inhibitory concentrations for antibiotic treatment were determined for bacterial isolates from culture-confirmed sepsis. Neonatal outcome data were collected following enrolment until 60 days of life. Antibiotic usage and neonatal outcome data were assessed. Survival analyses were adjusted to take into account potential clinical confounding variables related to the birth and pathogen. Additionally, resistance profiles, pharmacokinetic–pharmacodynamic probability of target attainment, and frequency of resistance (ie, resistance defined by in-vitro growth of isolates when challenged by antibiotics) were assessed. Questionnaires on health structures and antibiotic costs evaluated accessibility and affordability. Findings Between Nov 12, 2015, and Feb 1, 2018, 36 285 neonates were enrolled into the main BARNARDS study, of whom 9874 had clinically diagnosed sepsis and 5749 had available antibiotic data. The four most commonly prescribed antibiotic combinations given to 4451 neonates (77·42%) of 5749 were ampicillin–gentamicin, ceftazidime–amikacin, piperacillin–tazobactam–amikacin, and amoxicillin clavulanate–amikacin. This dataset assessed 476 prescriptions for 442 neonates treated with one of these antibiotic combinations with WGS data (all BARNARDS countries were represented in this subset except India). Multiple pathogens were isolated, totalling 457 isolates. Reported mortality was lower for neonates treated with ceftazidime–amikacin than for neonates treated with ampicillin–gentamicin (hazard ratio [adjusted for clinical variables considered potential confounders to outcomes] 0·32, 95% CI 0·14–0·72; p=0·0060). Of 390 Gram-negative isolates, 379 (97·2%) were resistant to ampicillin and 274 (70·3%) were resistant to gentamicin. Susceptibility of Gram-negative isolates to at least one antibiotic in a treatment combination was noted in 111 (28·5%) to ampicillin–gentamicin; 286 (73·3%) to amoxicillin clavulanate–amikacin; 301 (77·2%) to ceftazidime–amikacin; and 312 (80·0%) to piperacillin–tazobactam–amikacin. A probability of target attainment of 80% or more was noted in 26 neonates (33·7% [SD 0·59]) of 78 with ampicillin–gentamicin; 15 (68·0% [3·84]) of 27 with amoxicillin clavulanate–amikacin; 93 (92·7% [0·24]) of 109 with ceftazidime–amikacin; and 70 (85·3% [0·47]) of 76 with piperacillin–tazobactam–amikacin. However, antibiotic and country effects could not be distinguished. Frequency of resistance was recorded most frequently with fosfomycin (in 78 isolates [68·4%] of 114), followed by colistin (55 isolates [57·3%] of 96), and gentamicin (62 isolates [53·0%] of 117). Sites in six of the seven countries (excluding South Africa) stated that the cost of antibiotics would influence treatment of neonatal sepsis

    Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture

    Get PDF
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition
    corecore