6 research outputs found

    Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation

    Get PDF
    BACKGROUND: The microRNAs (miRNAs) are an extensive class of small noncoding RNAs (18 to 25 nucleotides) with probable roles in the regulation of gene expression. In Caenorhabditis elegans, lin-4 and let-7 miRNAs control the timing of fate specification of neuronal and hypodermal cells during larval development. lin-4, let-7 and other miRNA genes are conserved in mammals, and their potential functions in mammalian development are under active study. RESULTS: In order to identify mammalian miRNAs that might function in development, we characterized the expression of 119 previously reported miRNAs in adult organs from mouse and human using northern blot analysis. Of these, 30 miRNAs were specifically expressed or greatly enriched in a particular organ (brain, lung, liver or skeletal muscle). This suggests organ- or tissue-specific functions for miRNAs. To test if any of the 66 brain-expressed miRNAs were present in neurons, embryonal carcinoma cells were treated with all-trans-retinoic acid to promote neuronal differentiation. A total of 19 brain-expressed miRNAs (including lin-4 and let-7 orthologs) were coordinately upregulated in both human and mouse embryonal carcinoma cells during neuronal differentiation. The mammalian ortholog of C. elegans lin-28, which is downregulated by lin-4 in worms via 3' untranslated region binding, was also repressed during neuronal differentiation of mammalian embryonal carcinoma cells. Mammalian lin-28 messenger RNAs contain conserved predicted binding sites in their 3' untranslated regions for neuron-expressed miR-125b (a lin-4 ortholog), let-7a, and miR-218. CONCLUSIONS: The identification of a subset of brain-expressed miRNAs whose expression behavior is conserved in both mouse and human differentiating neurons implicates these miRNAs in mammalian neuronal development or function

    UBE1L is a retinoid target that triggers PML/RARĪ± degradation and apoptosis in acute promyelocytic leukemia

    Get PDF
    All-trans-retinoic acid (RA) treatment induces remissions in acute promyelocytic leukemia (APL) cases expressing the t(15;17) product, promyelocytic leukemia (PML)/RA receptor Ī± (RARĪ±). Microarray analyses previously revealed induction of UBE1L (ubiquitin-activating enzyme E1-like) after RA treatment of NB4 APL cells. We report here that this occurs within 3 h in RA-sensitive but not RA-resistant APL cells, implicating UBE1L as a direct retinoid target. A 1.3-kb fragment of the UBE1L promoter was capable of mediating transcriptional response to RA in a retinoid receptor-selective manner. PML/RARĪ±, a repressor of RA target genes, abolished this UBE1L promoter activity. A hallmark of retinoid response in APL is the proteasome-dependent PML/RARĪ± degradation. UBE1L transfection triggered PML/RARĪ± degradation, but transfection of a truncated UBE1L or E1 did not cause this degradation. A tight link was shown between UBE1L induction and PML/RARĪ± degradation. Notably, retroviral expression of UBE1L rapidly induced apoptosis in NB4 APL cells, but not in cells lacking PML/RARĪ± expression. UBE1L has been implicated directly in retinoid effects in APL and may be targeted for repression by PML/RARĪ±. UBE1L is proposed as a direct pharmacological target that overcomes oncogenic effects of PML/RARĪ± by triggering its degradation and signaling apoptosis in APL cells
    corecore