2,318 research outputs found

    Interrogation of telomerase structure and function with telomeric DNA

    Get PDF
    The studies described in this dissertation are directed toward understanding one of the components of a mechanism that cancer cells use to escape apoptosis and maintain genetic stability, resulting in cellular immortalization. Telomeres are nucleoprotein structures at the ends of eukaryotic chromosomes that are essential for safeguarding genomic stability and in regulating the lifespan of cellular replication. Telomerase is a specialized ribonucleoprotein complex that functions as a reverse transcriptase to extend the 3' end of the telomere, resulting in telomere conservation, and thus chromosomal stabilization. In greater than 85% of all cancer cells, telomerase is upregulated to rescue eroded telomeres and stabilize chromosomes, resulting in cellular immortalization. Because most somatic cells do not express detectable levels of telomerase, telomere-telomerase interactions are important in understanding cellular immortalization and aging, and developing specific anti-cancer therapeutics. Despite the great interest in telomerase, the mechanism of telomerase-catalyzed reverse transcription is not fully understood, and little is known about the structure of this intriguing enzyme. Each chapter, herein, describes novel research that investigates telomerase oligomerization and interactions between telomerase and model telomeric structures. More specifically, Chapter II focuses on the characterization and visualization of cooperative Euplotes aedicualtus telomerase dimers by gel filtration chromatography and electron microscopy. Chapter III details the formation, isolation, and characterization of G-quadruplex DNA structures by native gel electrophoresis, while Chapter IV documents novel interactions between a subset of G-quadruplex DNA structures and Euplotes aediculatus telomerase. Chapter V concludes the dissertation with a retrospective analysis of the research herein

    Towards the identification of the soil fungal microbiome community associated with Longleaf Pine

    Get PDF
    This project is part of a larger study looking at the restoration of the Longleaf Pine (LLP) ecosystem in certain Wildlife Management Areas (WMA) in Northwest Georgia. Our long-term aim is to look for potential associations between the aboveground and belowground community structures as the complex system of feedback mechanisms between the soil microbiome, the rhizosphere, and the plant communities is not yet understood. Soil samples were collected from a total of six plots in the Sheffield WMA located in Paulding County. The samples were collected from north or south facing hillside plots except for in the savanna sites (an area actively being restored for longleaf pine), where samples were collected on east or west facing slopes. Soil was sampled at three locations per plot (at the center, and 10 m below and above the center of each plot). A total of 18 soil samples were collected, each in sterile tubes with screw tops. DNA was extracted from five subsamples per tube using a commercially available kit. We hypothesized that the soil microbiome would differ significantly in north versus south facing areas, as well as between the savanna LLP and other plots due to the difference in aboveground plant communities. Analysis shows that the fungal phyla of Ascomycota and Basidiomycota are predominant in all plots of sampled. Basidiomycota shows its greatest predominance in the center of each plot. The most diverse results were found in the savanna plots showing a significant amount of unclassified fungi present as well as Zygomycota

    Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland

    Get PDF
    We used satellite images to examine the calving behavior of Helheim and Kangerdlugssuaq Glaciers, Greenland, from 2001 to 2006, a period in which they retreated and sped up. These data show that many large iceberg-calving episodes coincided with teleseismically detected glacial earthquakes, suggesting that calving-related processes are the source of the seismicity. For each of several events for which we have observations, the ice front calved back to a large, pre-existing rift. These rifts form where the ice has thinned to near flotation as the ice front retreats down the back side of a bathymetric high, which agrees well with earlier theoretical predictions. In addition to the recent retreat in a period of higher temperatures, analysis of several images shows that Helheim retreated in the 20th Century during a warmer period and then re-advanced during a subsequent cooler period. This apparent sensitivity to warming suggests that higher temperatures may promote an initial retreat off a bathymetric high that is then sustained by tidewater dynamics as the ice front retreats into deeper water. The cycle of frontal advance and retreat in less than a century indicates that tidewater glaciers in Greenland can advance rapidly. Greenland's larger reservoir of inland ice and conditions that favor the formation of ice shelves likely contribute to the rapid rates of advance

    Deletion of Panx3 Prevents the Development of Surgically Induced Osteoarthritis

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Abstract: Osteoarthritis (OA) is a highly prevalent, disabling joint disease with no existing therapies to slow or halt its progression. Cartilage degeneration hallmarks OA pathogenesis, and pannexin 3 (Panx3), a member of a novel family of channel proteins, is upregulated during this process. The function of Panx3 remains poorly understood, but we consistently observed a strong increase in Panx3 immunostaining in OA lesions in both mice and humans. Here, we developed and characterized the first global and conditional Panx3 knockout mice to investigate the role of Panx3 in OA. Interestingly, global Panx3 deletion produced no overt phenotype and had no obvious effect on early skeletal development. Mice lacking Panx3 specifically in the cartilage and global Panx3 knockout mice were markedly resistant to the development of OA following destabilization of medial meniscus surgery. These data indicate a specific catabolic role of Panx3 in articular cartilage and identify Panx3 as a potential therapeutic target for OA. Lastly, while Panx1 has been linked to over a dozen human pathologies, this is the first in vivo evidence for a role of Panx3 in disease. Key message: Panx3 is localized to cartilage lesions in mice and humans.Global Panx3 deletion does not result in any developmental abnormalities.Mice lacking Panx3 are resistant to the development of osteoarthritis.Panx3 is a novel therapeutic target for the treatment of osteoarthritis

    ASIME 2018 White Paper. In-Space Utilisation of Asteroids: Asteroid Composition -- Answers to Questions from the Asteroid Miners

    Full text link
    In keeping with the Luxembourg government's initiative to support the future use of space resources, ASIME 2018 was held in Belval, Luxembourg on April 16-17, 2018. The goal of ASIME 2018: Asteroid Intersections with Mine Engineering, was to focus on asteroid composition for advancing the asteroid in-space resource utilisation domain. What do we know about asteroid composition from remote-sensing observations? What are the potential caveats in the interpretation of Earth-based spectral observations? What are the next steps to improve our knowledge on asteroid composition by means of ground-based and space-based observations and asteroid rendez-vous and sample return missions? How can asteroid mining companies use this knowledge? ASIME 2018 was a two-day workshop of almost 70 scientists and engineers in the context of the engineering needs of space missions with in-space asteroid utilisation. The 21 Questions from the asteroid mining companies were sorted into the four asteroid science themes: 1) Potential Targets, 2) Asteroid-Meteorite Links, 3) In-Situ Measurements and 4) Laboratory Measurements. The Answers to those Questions were provided by the scientists with their conference presentations and collected by A. Graps or edited directly into an open-access collaborative Google document or inserted by A. Graps using additional reference materials. During the ASIME 2018, first day and second day Wrap-Ups, the answers to the questions were discussed further. New readers to the asteroid mining topic may find the Conversation boxes and the Mission Design discussions especially interesting.Comment: Outcome from the ASIME 2018: Asteroid Intersections with Mine Engineering, Luxembourg. April 16-17, 2018. 65 Pages. arXiv admin note: substantial text overlap with arXiv:1612.0070

    Impurity in a Luttinger liquid away from half-filling: a numerical study

    Full text link
    Conformal field theory gives quite detailed predictions for the low energy spectrum and scaling exponents of a massless Luttinger liquid at generic filling in the presence of an impurity. While these predictions were verified for half-filled systems, there was till now no analysis away from this particular filling. Here, we fill in this gap by numerically investigating a quarter-filled system using the density matrix renormalization group technique. Our results confirm conformal field theory predictions, and suggest that they are indeed valid for arbitrary fillings.Comment: 9 pages (include figures), one reference added in this new versio

    Experimental evaluation of the wake characteristics of cross flow turbine arrays

    Get PDF
    One key factor in the exploitation of tidal energy is the study of interactions of turbines when working in tidal turbine farms. The Momentum Reversal and Lift (MRL) turbine is a novel cross flow turbine. The three blades rotate around a common central horizontal axis which is parallel to their own axis and perpendicular to the flow. The novelty of the MRL turbine is that it relies on the combination of both lift and momentum reversal (drag) for energy extraction. Scaled MRL turbine models of 0.164 m in diameter were used to characterise the flow in three different tidal array settings. Detailed maps of axial velocity profiles and velocity deficits downstream of the turbine are presented, enabling the visualisation of characteristic flow patterns. The results show that the MRL generates lower velocity deficits and turbulence intensities in the near wake than those associated with horizontal axis turbines. The downstream wake was not completely symmetrical which was related to the geometry of the device but also due to the flow developed in the flume. Amongst the three array configurations studied, a fence of turbines with the lowest separation provided the highest power output

    Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef

    Get PDF
    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014

    A finite element modelling methodology for the non-linear stiffness evaluation of adhesively bonded single lap-joints: Part 2. Novel shell mesh to minimise analysis time

    Get PDF
    A new modelling methodology is presented that enables the stiffness of adhesively bonded single lap-joints to be included in the finite element analysis of whole vehicle bodies. This work was driven by the need to significantly reduce computing resources for vehicle analysis. To achieve this goal the adhesive bond line and adherends are modelled by a relatively ‘small’ number of shell elements to replace the usual solid element mesh for a reliable analysis. Previous work in Part 1 has provided the necessary background information to develop and verify the new finite element analysis that reduces the solution runtime by a factor of 1000. Although a joint’s non-linear stiffness is reliably simulated to failure load, it is recognised by the authors that the coarse shell mesh cannot provide accurate peak stresses or peak strains for the successful application of a numerical failure criterion. Given that the new modelling methodology is very quick to apply to existing shell models of vehicle bodies, it is recommended for use by the stress analyst who requires, say at the preliminary design stage, whole vehicle stiffness performance in a significantly reduced timeframe

    Experimental optimisation of power for large arrays of cross-flow tidal turbines

    Get PDF
    As commercial scale tidal energy devices are shortly to be deployed in the first arrays, the knowledge of how different array layouts perform is a key and under-examined field. Here, the Momentum Reversal Lift (MRL) turbine, developed by the University of Exeter, is deployed in five different array layouts utilising up to 15 devices. The use of dynamic turbines allows the inclusion of analysis of the effects of flow direction in the wake. The layouts investigated explore the effect of lateral and stream-wise turbine spacings as well as differences between staggered and in-line layouts on power. The staggered array with decreased streamwise spacing is shown to have the highest total power per ‘footprint’ area among the layouts tested. For the staggered arrays, increased downstream separation had little effect on total power generated, while decreasing the lateral spacing below 2 rotor diameters decreased the power. The in-line arrays showed a lower power per device but similar total power. It was also shown that increased in-flow into a turbine didn't necessarily lead to an increased power extraction. The decrease in power with a decrease in streamwise spacing is in-line with theoretical and CFD predictions
    • …
    corecore