213 research outputs found

    Witnessing Macroscopic Entanglement in a Staggered Magnetic Field

    Get PDF
    We investigate macroscopic entanglement in an infinite XX spin-1/2 chain with staggered magnetic field, B_l=B+e^{-i\pi l}b. Using single-site entropy and by constructing an entanglement witness, we search for the existence of entanglement when the system is at absolute zero, as well as in thermal equilibrium. Although the role of the alternating magnetic field b is, in general, to suppress entanglement as do B and T, we find that when T=0, introducing b allows the existence of entanglement even when the uniform magnetic field B is arbitrarily large. We find that the region and the amount of entanglement in the spin chain can be enhanced by a staggered magnetic field.Comment: Accepted for publication in Physical Review A, minor changes from previous version. 5 pages, 3 figure

    Friction in inflaton equations of motion

    Full text link
    The possibility of a friction term in the equation of motion for a scalar field is investigated in non-equilibrium field theory. The results obtained differ greatly from existing estimates based on linear response theory, and suggest that dissipation is not well represented by a term of the form ηϕ˙\eta\dot{\phi}.Comment: 4 pages, 2 figures, RevTex4. An obscurity in the original version has been clarifie

    Developing a Carbon Management Plan for the Royal Botanic Garden Edinburgh

    Get PDF
    Royal Botanic Garden Edinburgh joined the Carbon Management-Lite Programme run by the Carbon Trust in November 2009. This paper provides details of the programme and the process of writing a Carbon Management Plan

    Numerical investigation of friction in inflaton equations of motion

    Full text link
    The equation of motion for the expectation value of a scalar quantum field does not have the local form that is commonly assumed in studies of inflationary cosmology. We have recently argued that the true, temporally non-local equation of motion does not possess a time-derivative expansion and that the conversion of inflaton energy into particles is not, in principle, described by the friction term estimated from linear response theory. Here, we use numerical methods to investigate whether this obstacle to deriving a local equation of motion is purely formal, or of some quantitative importance. Using a simple scalar-field model, we find that, although the non-equilibrium evolution can exhibit significant damping, this damping is not well described by the local equation of motion obtained from linear response theory. It is possible that linear response theory does not apply to the situation we study only because thermalization turns out to be slow, but we argue that that the large discrepancies we observe indicate a failure of the local approximation at a more fundamental level.Comment: 13 pages, 7 figure

    Optimization of an Air Film Cooled CFRP Panel with an Embedded Vascular Network

    Get PDF
    This paper summarizes research performed on thermodynamic simulation and design optimization of a composite panel cooled by an external cool film and an internal vascular network

    Structural brain changes in First Episode Schizophrenia compared with Fronto-Temporal Lobar Degeneration: a meta-analysis.

    Get PDF
    BACKGROUND: The authors sought to compare gray matter changes in First Episode Schizophrenia (FES) compared with Fronto-Temporal Lobar Degeneration (FTLD) using meta-analytic methods applied to neuro-imaging studies. METHODS: A systematic search was conducted for published, structural voxel-based morphometric MRI studies in patients with FES or FTLD. Data were combined using anatomical likelihood estimation (ALE) to determine the extent of gray matter decreases and analysed to ascertain the degree of overlap in the spatial distribution of brain changes in both diseases. RESULTS: Data were extracted from 18 FES studies (including a total of 555 patients and 621 comparison subjects) and 20 studies of FTLD or related disorders (including a total of 311 patients and 431 comparison subjects). The similarity in spatial overlap of brain changes in the two disorders was significant (p = 0.001). Gray matter deficits common to both disorders included bilateral caudate, left insula and bilateral uncus regions. CONCLUSIONS: There is a significant overlap in the distribution of structural brain changes in First Episode Schizophrenia and Fronto-Temporal Lobar Degeneration. This may reflect overlapping aetiologies, or a common vulnerability of these regions to the distinct aetio-pathological processes in the two disorders.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Perturbative nonequilibrium dynamics of phase transitions in an expanding universe

    Get PDF
    A complete set of Feynman rules is derived, which permits a perturbative description of the nonequilibrium dynamics of a symmetry-breaking phase transition in λϕ4\lambda\phi^4 theory in an expanding universe. In contrast to a naive expansion in powers of the coupling constant, this approximation scheme provides for (a) a description of the nonequilibrium state in terms of its own finite-width quasiparticle excitations, thus correctly incorporating dissipative effects in low-order calculations, and (b) the emergence from a symmetric initial state of a final state exhibiting the properties of spontaneous symmetry breaking, while maintaining the constraint 0\equiv 0. Earlier work on dissipative perturbation theory and spontaneous symmetry breaking in Minkowski spacetime is reviewed. The central problem addressed is the construction of a perturbative approximation scheme which treats the initial symmetric state in terms of the field ϕ\phi, while the state that emerges at later times is treated in terms of a field ζ\zeta, linearly related to ϕ2\phi^2. The connection between early and late times involves an infinite sequence of composite propagators. Explicit one-loop calculations are given of the gap equations that determine quasiparticle masses and of the equation of motion for and the renormalization of these equations is described. The perturbation series needed to describe the symmetric and broken-symmetry states are not equivalent, and this leads to ambiguities intrinsic to any perturbative approach. These ambiguities are discussed in detail and a systematic procedure for matching the two approximations is described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review
    corecore