3 research outputs found

    Methylselenocysteine Treatment Leads to Diselenide Formation in Human Cancer Cells: Evidence from X-ray Absorption Spectroscopy Studies

    No full text
    The selenoamino acids methylselenocysteine (MeSeCys) and selenomethionine (SeMet) have disparate efficacies as anticancer agents. Herein, we use X-ray absorption spectroscopy to determine the chemical form of selenium in human neuroblastoma cells. Cells treated with MeSeCys contain a significant diselenide component, which is absent from SeMet-treated cells and suggests that metabolites of MeSeCys are capable of altering the redox status of the cells. The differences in the speciation of Se in the selenoamino acid-treated cells may provide insight into the differing anticancer activities of MeSeCys and SeMet

    Methionine Oxidation Enhances κ-Casein Amyloid Fibril Formation

    No full text
    The effects of protein oxidation, for example of methionine residues, are linked to many diseases, including those of protein misfolding, such as Alzheimer’s disease. Protein misfolding diseases are characterized by the accumulation of insoluble proteinaceous aggregates comprised mainly of amyloid fibrils. Amyloid-containing bodies known as corpora amylacea (CA) are also found in mammary secretory tissue, where their presence slows milk flow. The major milk protein κ-casein readily forms amyloid fibrils under physiological conditions. Milk exists in an extracellular oxidizing environment. Accordingly, the two methionine residues in κ-casein (Met<sub>95</sub> and Met<sub>106</sub>) were selectively oxidized and the effects on the fibril-forming propensity, cellular toxicity, chaperone ability, and structure of κ-casein were determined. Oxidation resulted in an increase in the rate of fibril formation and a greater level of cellular toxicity. β-Casein, which inhibits κ-casein fibril formation in vitro, was less effective at suppressing fibril formation of oxidized κ-casein. The ability of κ-casein to prevent the amorphous aggregation of target proteins was slightly enhanced upon methionine oxidation, which may arise from the protein’s greater exposed surface hydrophobicity. No significant changes to κ-casein’s intrinsically disordered structure occurred upon oxidation. The enhanced rate of fibril formation of oxidized κ-casein, coupled with the reduced chaperone ability of β-casein to prevent this aggregation, may affect casein–casein interaction within the casein micelle and thereby promote κ-casein aggregation and contribute to the formation of CA
    corecore