7 research outputs found

    Achieving Biocompatible SABRE: An invitro Cytotoxicity Study

    Get PDF
    Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion‐exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study

    Iridium-Catalyzed Silylation

    No full text
    In this chapter, homogeneous iridium-catalyzed silylation reactions are reviewed, focusing primarily on their synthetic utility. Additionally, relevant catalytic cycles are commented, paying especial attention to those that are more representative of each type of process. The chapter is divided into two main types of reactions, namely, hydrosilylation and C–H bond silylation. The former deals with the hydrosilylation of polar unsaturated bonds (ketones and imines) and non-polar unsaturated bonds (alkenes and alkynes). The latter covers the directed and non-directed C–H bond silylation of alkenes, alkynes, arenes, and alkanes – mainly comprising dehydrogenative silylation reactions, which may occur in the presence or absence of a hydrogen acceptor.This work was supported by the “Ramón y Cajal” program (RYC2016-20864) (FSE/Agencia Estatal de Investigación) (M. I.) and the Spanish Ministry of Science, Innovation and Universities (RTI2018-099136-A-I00).Peer reviewe
    corecore