81 research outputs found

    New emission line at ~3.5 keV - observational status, connection with radiatively decaying dark matter and directions for future studies

    Get PDF
    Recent works of [1402.2301,1402.4119], claiming the detection of extra emission line with energy ~3.5 keV in X-ray spectra of certain clusters of galaxies and nearby Andromeda galaxy, have raised considerable interest in astrophysics and particle physics communities. A number of new observational studies claim detection or non-detection of the extra line in X-ray spectra of various cosmic objects. In this review I summarize existing results of these studies, overview possible interpretations of the extra line, including intriguing connection with radiatively decaying dark matter, and show future directions achievable with existing and planned X-ray cosmic missions.Comment: 8 pages, invited review for Advances in Astronomy and Space Physics. Comments are welcom

    Search for cyclotron absorptions from magnetars in the quiescence with XMM-Newton

    Get PDF
    In this work, we perform the detailed analysis of absorption features in spectra of magnetar candidates observed by XMM-Newton satellite. No significant line-like feature has been found. This negative result may indicate the possible presence of smoothing out the absorption features mechanisms.Comment: 4 pages, 2 figures, to appear in Contributed Papers of 17th Young Scientific Conference held in Kyiv (Ukraine), April 26 - May 1, 201

    Next decade of sterile neutrino studies

    Get PDF
    We review the status of sterile neutrino dark matter and discuss astrophysical and cosmological bounds on its properties as well as future prospects for its experimental searches. We argue that if sterile neutrinos are the dominant fraction of dark matter, detecting an astrophysical signal from their decay (the so-called 'indirect detection') may be the only way to identify these particles experimentally. However, it may be possible to check the dark matter origin of the observed signal unambiguously using its characteristic properties and/or using synergy with accelerator experiments, searching for other sterile neutrinos, responsible for neutrino flavor oscillations. We argue that to fully explore this possibility a dedicated cosmic mission - an X-ray spectrometer - is needed.Comment: 23 pages, 6 figure

    Potential of LOFT telescope for the search of dark matter

    Full text link
    Large Observatory For X-ray Timing (LOFT) is a next generation X-ray telescope selected by European Space Agency as one of the space mission concepts within the ``Cosmic Vision'' programme. The Large Area Detector on board of LOFT will be a collimator-type telescope with an unprecedentedly large collecting area of about 10 square meters in the energy band between 2 and 100 keV. We demonstrate that LOFT will be a powerful dark matter detector, suitable for the search of the X-ray line emission expected from decays of light dark matter particles in galactic halos. We show that LOFT will have sensitivity for dark matter line search more than an order of magnitude higher than that of all existing X-ray telescopes. In this way, LOFT will be able to provide a new insight into the fundamental problem of the nature of dark matter.Comment: 9 pages, 8 figure
    corecore