93 research outputs found

    New emission line at ~3.5 keV - observational status, connection with radiatively decaying dark matter and directions for future studies

    Get PDF
    Recent works of [1402.2301,1402.4119], claiming the detection of extra emission line with energy ~3.5 keV in X-ray spectra of certain clusters of galaxies and nearby Andromeda galaxy, have raised considerable interest in astrophysics and particle physics communities. A number of new observational studies claim detection or non-detection of the extra line in X-ray spectra of various cosmic objects. In this review I summarize existing results of these studies, overview possible interpretations of the extra line, including intriguing connection with radiatively decaying dark matter, and show future directions achievable with existing and planned X-ray cosmic missions.Comment: 8 pages, invited review for Advances in Astronomy and Space Physics. Comments are welcom

    Potential of LOFT telescope for the search of dark matter

    Full text link
    Large Observatory For X-ray Timing (LOFT) is a next generation X-ray telescope selected by European Space Agency as one of the space mission concepts within the ``Cosmic Vision'' programme. The Large Area Detector on board of LOFT will be a collimator-type telescope with an unprecedentedly large collecting area of about 10 square meters in the energy band between 2 and 100 keV. We demonstrate that LOFT will be a powerful dark matter detector, suitable for the search of the X-ray line emission expected from decays of light dark matter particles in galactic halos. We show that LOFT will have sensitivity for dark matter line search more than an order of magnitude higher than that of all existing X-ray telescopes. In this way, LOFT will be able to provide a new insight into the fundamental problem of the nature of dark matter.Comment: 9 pages, 8 figure

    21-cm observations and warm dark matter models

    Get PDF
    Observations of the redshifted 21-cm signal (in absorption or emission) allow us to peek into the epoch of "dark ages" and the onset of reionization. These data can provide a novel way to learn about the nature of dark matter, in particular about the formation of small size dark matter halos. However, the connection between the formation of structures and 21-cm signal requires knowledge of stellar to total mass relation, escape fraction of UV photons, and other parameters that describe star formation and radiation at early times. This baryonic physics depends on the properties of dark matter and in particular in warm-dark-matter (WDM) models, star formation may follow a completely different scenario, as compared to the cold-dark-matter case. We use the recent measurements by the EDGES [J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in thesky-averaged spectrum,Nature (London) 555, 67 (2018).] to demonstrate that when taking the above considerations into account, the robust WDM bounds are in fact weaker than those given by the Lyman-α\alpha forest method and other structure formation bounds. In particular, we show that resonantly produced 7 keV sterile neutrino dark matter model is consistent with these data. However, a holistic approach to modelling of the WDM universe holds great potential and may in the future make 21-cm data our main tool to learn about dark matter clustering properties.Comment: matches published versio
    corecore