73 research outputs found

    High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Get PDF
    BACKGROUND: Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST)-derived array. RESULTS: We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR) of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS) sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from a closely related species. CONCLUSION: The number of different genes represented on microarrays for unfinished genomes can be greatly increased by matching known gene transcript annotations from a closely related species with sequence data from the unfinished genome. Signal intensity on both EST- and genome-derived arrays was highly correlated with probe distance from the 3' UTR, information often missing from ESTs yet present in early-stage genome projects

    Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain

    Get PDF
    Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of Ξ±9Ξ±10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key Ξ±9Ξ±10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABA(B) receptors has caused confusion over whether blockade of Ξ±9Ξ±10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent Ξ±9Ξ±10 nAChRs, and was at least 1,000-fold more selective for Ξ±9Ξ±10 nAChRs vs. all other molecular targets tested, including opioid and GABA(B) receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in Ξ±9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of Ξ±9-containing nAChRs as the basis for the efficacy of RgIA4, and that Ξ±9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain

    Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human

    Get PDF
    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported

    A highly potent anti-VISTA antibody KVA12123 -Β a new immune checkpoint inhibitor and a promising therapy against poorly immunogenic tumors

    Get PDF
    BackgroundImmune checkpoint therapies have led to significant breakthroughs in cancer patient treatment in recent years. However, their efficiency is variable, and resistance to immunotherapies is common. VISTA is an immune-suppressive checkpoint inhibitor of T cell response belonging to the B7 family and a promising novel therapeutic target. VISTA is expressed in the immuno-suppressive tumor microenvironment, primarily by myeloid lineage cells, and its genetic knockout or antibody blockade restores an efficient antitumor immune response.MethodsFully human monoclonal antibodies directed against VISTA were produced after immunizing humanized Trianni mice and sorting and sequencing natively-linked B cell scFv repertoires. Anti-VISTA antibodies were evaluated for specificity, cross-reactivity, monocyte and T cell activation, Fc-effector functions, and antitumor efficacy using in vitro and in vivo models to select the KVA12123 antibody lead candidate. The pharmacokinetics and safety profiles of KVA12123 were evaluated in cynomolgus monkeys.ResultsHere, we report the development of a clinical candidate anti-VISTA monoclonal antibody, KVA12123. KVA12123 showed high affinity binding to VISTA through a unique epitope distinct from other clinical-stage anti-VISTA monoclonal antibodies. This clinical candidate demonstrated high specificity against VISTA with no cross-reactivity detected against other members of the B7 family. KVA12123 blocked VISTA binding to its binding partners. KVA12123 induced T cell activation and demonstrated NK-mediated monocyte activation. KVA12123 treatment mediated strong single-agent antitumor activity in several syngeneic tumor models and showed enhanced efficacy in combination with anti-PD-1 treatment. This clinical candidate was engineered to improve its pharmacokinetic characteristics and reduce Fc-effector functions. It was well-tolerated in preclinical toxicology studies in cynomolgus monkeys, where hematology, clinical chemistry evaluations, and clinical observations revealed no indicators of toxicity. No cytokines associated with cytokine release syndrome were elevated.ConclusionThese results establish that KVA12123 is a promising drug candidate with a distinct but complementary mechanism of action of the first generation of immune checkpoint inhibitors. This antibody is currently evaluated alone and in combination with pembrolizumab in a Phase 1/2 open-label clinical trial in patients with advanced solid tumors

    IL28B SNP rs12979860 Is a Critical Predictor for On-Treatment and Sustained Virologic Response in Patients with Hepatitis C Virus Genotype-1 Infection

    Get PDF
    Single nucleotide polymorphisms (SNPs) of interleukin-28B (IL28B) have received considerable interest for their association with sustained virological response (SVR) when treating patients of genotype-1 hepatitis C virus (GT1-HCV) chronic infection with pegylated interferon and ribavirin (PegIFN/RBV). This study was to investigate the predictive power of IL28B SNPs for on-treatment responses and SVR in treatment-naΓ―ve patients with GT1-HCV chronic infection.We analyzed ten SNPs of IL28B in 191 treatment-naΓ―ve patients with GT1-HCV chronic infection who received PegIFN/RBV. In these patients, rapid virological response (RVR), early virological response (EVR) and SVR were achieved in 69.6%, 95.8% and 68.6% of the patients, respectively. Multivariate analysis (odds ratio; 95% confidence interval; P value) indicated age (0.96; 0.93-0.99; 0.012), low baseline viral load (4.65; 2.23-9.66; <0.001) and CC genotype of rs12979860 (7.74; 2.55-23.53; <0.001) but no other SNPs were independent predictors for SVR. In addition, none of the ten SNPs examined were associated with baseline viral load and stages of liver fibrosis. Regarding RVR, low baseline viral load (2.83; 1.40-5.73; 0.004) and CC genotype of rs12979860 (10.52; 3.45-32.04; <0.001) were two critical predictors. As for EVR, only CC genotype of rs12979860 (36.21; 6.68-196.38; <0.001) was the predictor. Similarly, for end of treatment response (ETR), CC genotype of rs12979860 (15.42; 4.62-51.18; <0.001) was the only predictor. For patients with RVR, only low baseline viral load (3.90; 1.57-9.68; 0.003) could predict the SVR. For patients without RVR, only rs12979860 (4.60; 1.13-18.65; 0.033) was the predictor for SVR.rs12979860 is the critical predictor for RVR, EVR, ETR and SVR in treatment-naΓ―ve patients of GT1-HCV chronic infection. Furthermore, this SNP is the only predictor for SVR in patients without RVR. These results have provided evidence that rs12979860 is the ideal IL28B SNP for genetic testing in treating patients of GT1-HCV chronic infection

    Msh2 Blocks an Alternative Mechanism for Non-Homologous Tail Removal during Single-Strand Annealing in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage

    Rad51 Inhibits Translocation Formation by Non-Conservative Homologous Recombination in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer
    • …
    corecore