193 research outputs found
Metabolic and Non-Cognitive Manifestations of Alzheimer’s Disease: The Hypothalamus as Both Culprit and Target of Pathology
Alzheimer’s disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development
Hypertension and Cerebrovascular Dysfunction
Essential hypertension has devastating effects on the brain, being the major cause of stroke and a leading cause of dementia. Hypertension alters the structure of cerebral blood vessels and disrupts intricate vasoregulatory mechanisms that assure an adequate blood supply to the brain. These alterations threaten the cerebral blood supply and increase the susceptibility of the brain to ischemic injury as well as Alzheimer's disease. This review focuses on the mechanisms by which hypertension disrupts cerebral blood vessels, highlighting recent advances and outstanding issues
Obituary: In Memory of Myron Flint Beal, MD, November 6, 1950–June 12, 2021
Producción CientÃficaNo abstract availabl
Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain
Infiltrating CX3CR1GFP/+ and CCR2RFP/+ cells are monocyte/macrophages. (A) Representative fluorescent merged images and orthogonal views of CX3CR1GFP/+ (green) and Iba1+ (red) ramified (upper panels) and amoeboid cells (lower panels) showing co-localization of both markers. The images were taken from the ischemic hemisphere at 14 days post-MCAo. Scale bar represent 20 μm. (B) Representative fluorescent merged images and orthogonal views of co-localization for the markers CCR2GFP/+ (red) and Iba1+ (blue). The images were taken from the ischemic hemisphere at 3 days post-MCAo. Scale bar represent 20 μm. (PDF 10117 kb
Purinergic Signaling Induces Cyclooxygenase-1-Dependent Prostanoid Synthesis in Microglia: Roles in the Outcome of Excitotoxic Brain Injury
Cyclooxygenases (COX) are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E2 synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA) induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E2 synthesis (10 minutes after NMDA), while both COX-1 and COX-2 contribute to the second phase (3–24 hours after NMDA). Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E2 synthesis is dependent on P2X7 receptors, extracellular Ca2+ and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E2 synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E2 receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E2 receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E2 production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain injury
The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation
Activation of NF-κB-dependent transcription represents an important hallmark of inflammation. While the acute inflammatory response is per se beneficial, it can become deleterious if its spatial and temporal profile is not tightly controlled. Classically, NF-κB activity is limited by cytoplasmic retention of the NF-κB dimer through binding to inhibitory IκB proteins. However, increasing evidence suggests that NF-κB activity can also be efficiently contained by direct ubiquitination of NF-κB subunits. Here, we identify the HECT-domain ubiquitin ligase HERC3 as novel negative regulator of NF-κB activity. We find that HERC3 restricts NF-κB nuclear import and DNA binding without affecting IκBα degradation. Instead HERC3 indirectly binds to the NF-κB RelA subunit after liberation from IκBα inhibitor leading to its ubiquitination and protein destabilization. Remarkably, the regulation of RelA activity by HERC3 is independent of its inherent ubiquitin ligase activity. Rather, we show that HERC3 and RelA are part of a multi-protein complex containing the proteasome as well as the ubiquitin-like protein ubiquilin-1 (UBQLN1). We present evidence that HERC3 and UBQLN1 provide a link between NF-κB RelA and the 26S proteasome, thereby facilitating RelA protein degradation. Our findings establish HERC3 as novel candidate regulating the inflammatory response initiated by NF-κB.American Heart Association Scientist Development: (SDG102600298), National Institute of Health
Grants: (HL077308, NS34179), Funding for open access charge: NIH (NS34179)
MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival
The innate immune system relies on evolutionally conserved Toll-like receptors (TLRs) to recognize diverse microbial molecular structures. Most TLRs depend on a family of adaptor proteins termed MyD88s to transduce their signals. Critical roles of MyD88-1–4 in host defense were demonstrated by defective immune responses in knockout mice. In contrast, the sites of expression and functions of vertebrate MyD88-5 have remained elusive. We show that MyD88-5 is distinct from other MyD88s in that MyD88-5 is preferentially expressed in neurons, colocalizes in part with mitochondria and JNK3, and regulates neuronal death. We prepared MyD88-5/GFP transgenic mice via a bacterial artificial chromosome to preserve its endogenous expression pattern. MyD88-5/GFP was detected chiefly in the brain, where it associated with punctate structures within neurons and copurified in part with mitochondria. In vitro, MyD88-5 coimmunoprecipitated with JNK3 and recruited JNK3 from cytosol to mitochondria. Hippocampal neurons from MyD88-5–deficient mice were protected from death after deprivation of oxygen and glucose. In contrast, MyD88-5–null macrophages behaved like wild-type cells in their response to microbial products. Thus, MyD88-5 appears unique among MyD88s in functioning to mediate stress-induced neuronal toxicity
Gadolinium Enhancement in Intracranial Atherosclerotic Plaque and Ischemic Stroke: A Systematic Review and Meta-Analysis.
BACKGROUND: Gadolinium enhancement on high-resolution magnetic resonance imaging (MRI) has been proposed as a marker of inflammation and instability in intracranial atherosclerotic plaque. We performed a systematic review and meta-analysis to summarize the association between intracranial atherosclerotic plaque enhancement and acute ischemic stroke. METHODS AND RESULTS: We searched the medical literature to identify studies of patients undergoing intracranial vessel wall MRI for evaluation of intracranial atherosclerotic plaque. We recorded study data and assessed study quality, with disagreements in data extraction resolved by a third reader. A random-effects odds ratio was used to assess whether, in any given patient, cerebral infarction was more likely in the vascular territory supplied by an artery with MRI-detected plaque enhancement as compared to territory supplied by an artery without enhancement. We calculated between-study heterogeneity using the Cochrane Q test and publication bias using the Begg-Mazumdar test. Eight articles published between 2011 and 2015 met inclusion criteria. These studies provided information about plaque enhancement characteristics from 295 arteries in 330 patients. We found a significant positive relationship between MRI enhancement and cerebral infarction in the same vascular territory, with a random effects odds ratio of 10.8 (95% CI 4.1-28.1, P<0.001). No significant heterogeneity (Q=11.08, P=0.14) or publication bias (P=0.80) was present. CONCLUSIONS: Intracranial plaque enhancement on high-resolution vessel wall MRI is strongly associated with ischemic stroke. Evaluation for plaque enhancement on MRI may be a useful test to improve diagnostic yield in patients with ischemic strokes of undetermined etiology.National Institutes of Health/National Institute of Neurological Disorders and Stroke (Grant ID: K23NS082367), National Institutes of Health/ National Center for Advancing Translational Sciences (Grant ID: KL2TR000458)This is the final version of the article. It first appeared from the American Heart Association via http://dx.doi.org/10.1161/JAHA.116.00381
IJPPP1112002
Abstract: The renin-angiotensin system (RAS) and its active peptide angiotensin II (AngII) have major involvements not only in hypertension but also in mood and anxiety disorders. Substantial evidence supports the notion that AngII acts as a neuromodulator in the brain. In this review, we provide an overview of the link between the RAS and anxiety or mood disorders, and focus on recent advances in the understanding of AngII-linked, NADPH oxidase-derived oxidative stress in the central nervous system, which may underlie pathogenesis of mood and anxiety disorders
Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins
AbstractTransgenic FVB/N mice overexpressing human (Hu) or mouse (Mo) Alzheimer amyloid precursor protein (APP695) die early and develop a CNS disorder that includes neophobia and impaired spatial alternation, with diminished glucose utilization and astrogliosis mainly in the cerebrum. Age at onset of neophobia and age at death decrease with increasing levels of brain APP. HuAPP transgenes induce death much earlier than MoAPP transgenes expressed at similar levels. No extracellular amyloid was detected, indicating that some deleterious processes related to APP overexpression are dissociated from formation of amyloid. A similar clinical syndrome occurs spontaneously in ∼20% of nontransgenic mice when they reach mid-to late-adult life, suggesting that APP overexpression may accelerate a naturally occuring age-related CNS disorder in FVB/N mice
- …