632 research outputs found

    A structural modeling approach for the understanding of initiation and elongation of ALS-linked superoxide dismutase fibrils

    Get PDF
    Familial amyotrophic lateral sclerosis caused by mutations in copper-zinc superoxide dismutase (SOD1) is characterized by the presence of SOD1-rich inclusions in spinal cords. It has been shown that a reduced intra-subunit disulfide bridge apo-SOD1 can rapidly initiate fibrillation forming an inter-subunits disulfide under mild, physiologically accessible conditions. Once initiated, elongation can proceed via recruitment of either apo or partially metallated disulfide-intact SOD1 and the presence of copper, but not zinc, ions inhibit fibrillation. We propose a structural model, refined through molecular dynamics simulations, that, taking into account these experimental findings, provides a molecular explanation for the initiation and the elongation of SOD1 fibrils in physiological conditions. The model indicates the occurrence of a new dimeric unit, prone to interact one with the other due to the presence of a wide hydrophobic surface and specific electrostatic interactions. The model has dimensions consistent with the SOD1 fibril size observed through electron microscopy and provides a structural basis for the understanding of SOD1 fibrillation

    Natural compounds as therapeutic agents: The case of human topoisomerase ib

    Get PDF
    Natural products are widely used as source for drugs development. An interesting example is represented by natural drugs developed against human topoisomerase IB, a ubiquitous enzyme involved in many cellular processes where several topological problems occur due the formation of supercoiled DNA. Human topoisomerase IB, involved in the solution of such problems relaxing the DNA cleaving and religating a single DNA strand, represents an important target in anticancer therapy. Several natural compounds inhibiting or poisoning this enzyme are under investigation as possible new drugs. This review summarizes the natural products that target human topoisomerase IB that may be used as the lead compounds to develop new anticancer drugs. Moreover, the natural compounds and their derivatives that are in clinical trial are also commented on

    Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens

    Get PDF
    Nonribosomal peptide synthetases (NRPSs) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics

    Profile and potential bioactivity of the miRNome and metabolome expressed in Malva sylvestris L. leaf and flower

    Get PDF
    Malva sylvestris L. (common mallow) is a plant species widely used in phytotherapy and ethnobotanical practices since time immemorial. Characterizing the components of this herb might promote a better comprehension of its biological effects on the human body but also favour the identification of the molecular processes that occur in the plant tissues. Thus, in the present contribution, the scientific knowledge about the metabolomic profile of the common mallow was expanded. In particular, the phytocomplex of leaves and flowers from this botanical species and the extraction capacity of different concentrations of ethanol (i.e., 95%, 70%, 50%, and 0%; v/v in ddH2O) for it were investigated by spectrophotometric and chromatographic approaches. In detail, 95% ethanol extracts showed the worst capacity in isolating total phenols and flavonoids, while all the hydroalcoholic samples revealed a specific ability in purifying the anthocyanins. HPLC–DAD system detected and quantified 20 phenolic secondary metabolites, whose concentration in the several extracts depended on their own chemical nature and the percentage of ethanol used in the preparation. In addition, the stability of the purified phytochemicals after resuspension in pure ddH2O was also proved, considering a potential employment of them in biological/medical studies which include in vitro and in vivo experiments on mammalian models. Here, for the first time, the expressed miRNome in M. sylvestris was also defined by Next Generation Sequencing, revealing the presence of 33 microRNAs (miRNAs), 10 typical for leaves and 2 for flowers. Then, both plant and human putative mRNA targets for the detected miRNAs were predicted by bioinformatics analyses, with the aim to clarify the possible role of these small nucleic acids in the common mallow plant tissues and to try to understand if they could exert a potential cross-kingdom regulatory activity on the human health. Surprisingly, our investigations revealed that 19 miRNAs out of 33 were putatively able to modulate, in the plant cells, the expression of various chromosome scaffold proteins. In parallel, we found, in the human transcriptome, a total of 383 mRNAs involved in 5 fundamental mammalian cellular processes (i.e., apoptosis, senescence, cell-cycle, oxidative stress, and invasiveness) that theoretically could be bound and regulated by M. sylvestris miRNAs. The evidence collected in this work would suggest that the beneficial properties of the use of M. sylvestris, documented by the folk medicine, are probably linked to their content of miRNAs and not only to the action of phytochemicals (e.g., anthocyanins). This would open new perspectives about the possibility to develop gene therapies based on miRNAs isolated from medicinal plants, including M. sylvestris

    Searching for Primordial Black Holes with the Einstein Telescope: impact of design and systematics

    Full text link
    Primordial Black Holes (PBHs) have recently attracted much attention as they may explain some of the LIGO/Virgo/KAGRA observations and significantly contribute to the dark matter in our universe. The next generation of Gravitational Wave (GW) detectors will have the unique opportunity to set stringent bounds on this putative population of objects. Focusing on the Einstein Telescope (ET), in this paper we analyse in detail the impact of systematics and different detector designs on our future capability of observing key quantities that would allow us to discover and/or constrain a population of PBH mergers. We also perform a population analysis, with a mass and redshift distribution compatible with the current observational bounds. Our results indicate that ET alone can reach an exquisite level of accuracy on the key observables considered, as well as detect up to tens of thousands of PBH binaries per year, but for some key signatures (in particular high--redshift sources) the cryogenic instrument optimised for low frequencies turns out to be crucial, both for the number of observations and the error on the parameters reconstruction. As far as the detector geometry is concerned, we find that a network consisting of two separated L--shaped interferometers of 15 (20)~km arm length, oriented at 4545^{\circ} with respect to each other performs better than a single triangular shaped instrument of 10 (15)~km arm length, for all the metrics considered.Comment: 24 pages, 13 figure

    Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia

    Get PDF
    Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL

    Topoisomerase IB: a relaxing enzyme for stressed DNA

    Get PDF
    DNA topoisomerase I enzymes relieve the torsional strain in DNA; they are essential for fundamental molecular processes such as DNA replication, transcription, recombination, and chromosome condensation; and act by cleaving and then religating DNA strands. Over the past few decades, scientists have focused on the DNA topoisomerases biological functions and established a unique role of Type I DNA topoisomerases in regulating gene expression and DNA chromosome condensation. Moreover, the human enzyme is being investigated as a target for cancer chemotherapy. The active site tyrosine is responsible for initiating two transesterification reactions to cleave and then religate the DNA backbone, allowing the release of superhelical tension. The different steps of the catalytic mechanism are affected by various inhibitors; some of them prevent the interaction between the enzyme and the DNA while others act as poisons, leading to TopI-D NA lesions, breakage of DNA, and eventually cellular death. In this review, our goal is to provide an overview of mechanism of human topoisomerase IB action together with the different types of inhibitors and their effect on the enzyme functionality

    Biochemical characterization of the Nocardia lactamdurans ACV synthetase

    Get PDF
    The L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS) is a nonribosomal peptide synthetase (NRPS) that fulfills a crucial role in the synthesis of β-lactams. Although some of the enzymological aspects of this enzyme have been elucidated, its large size, at over 400 kDa, has hampered heterologous expression and stable purification attempts. Here we have successfully overexpressed the Nocardia lactamdurans ACVS in E. coli HM0079. The protein was purified to homogeneity and characterized for tripeptide formation with a focus on the substrate specificity of the three modules. The first L-α-aminoadipic acid-activating module is highly specific, whereas the modules for L-cysteine and L-valine are more promiscuous. Engineering of the first module of ACVS confirmed the strict specificity observed towards its substrate, which can be understood in terms of the non-canonical peptide bond position
    corecore