260 research outputs found
Deterministic drift instability and stochastic thermal perturbations of magnetic dissipative droplet solitons
The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer torque. These structures have been observed experimentally at room temperature, showcasing their robustness against noise. Here, we quantify the effects of thermal noise by deriving stochastic equations of motion for a droplet based on soliton perturbation theory. First, it is found that deterministic droplets are linearly unstable at large bias currents, subject to a drift instability. When the droplet is linearly stable, our framework allows us to analytically compute the droplet's generation linewidth and center variance. Additionally, we study the influence of nonlocal and Oersted fields with micromagnetic simulations, providing insight into their effect on the generation linewidth. These results motivate detailed experiments on the current and temperature-dependent linewidth as well as drift instability statistics of droplets, which are important figures-of-merit in the prospect of droplet-based applications
Gravitational Role in Liquid Phase Sintering
To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes
Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study
Nanocontact spin-torque oscillators are devices in which the generation of propagating spin waves can be sustained by spin transfer torque. In the present paper, we perform combined electrical and optical measurements in a single experimental setup to systematically investigate the excitation of spin waves by a nanocontact spin-torque oscillator and their propagation in a Ni80Fe20 extended layer. By using microfocused Brillouin light scattering we observe an anisotropic emission of spin waves, due to the broken symmetry imposed by the inhomogeneous Oersted field generated by the injected current. In particular, spin waves propagate on the side of the nanocontact where the Oersted field and the in-plane component of the applied magnetic field are antiparallel, while propagation is inhibited on the opposite side. Moreover, propagating spin waves are efficiently excited only in a limited frequency range corresponding to wavevectors inversely proportional to the size of the nanocontact. This frequency range obeys the dispersion relation for exchange-dominated spin waves in the far field, as confirmed by micromagnetic simulations of similar devices. The present results have direct consequences for spin wave based applications, such as synchronization, computation, and magnonics
Spin transfer torque generated magnetic droplet solitons (invited)
We present recent experimental and numerical advancements in the understanding of spin transfer torque generated magnetic droplet solitons. The experimental work focuses on nano-contact spin torque oscillators (NC-STOs) based on orthogonal (pseudo) spin valves where the Co fixed layer has an easy-plane anisotropy, and the [Co/Ni] free layer has a strong perpendicular magnetic anisotropy. The NC-STO resistance and microwave signal generation are measured simultaneously as a function of drive current and applied perpendicular magnetic field. Both exhibit dramatic transitions at a certain current dependent critical field value, where the microwave frequency drops 10 GHz, modulation sidebands appear, and the resistance exhibits a jump, while the magnetoresistance changes sign. We interpret these observations as the nucleation of a magnetic droplet soliton with a large fraction of its magnetization processing with an angle greater than 90°, i.e., around a direction opposite that of the applied field. This interpretation is corroborated by numerical simulations. When the field is further increased, we find that the droplet eventually collapses under the pressure from the Zeeman energy
Ultrastrong Magnon-Magnon Coupling and Chiral Symmetry Breaking in a 3D Magnonic Metamaterial
Strongly-interacting nanomagnetic arrays are ideal systems for exploring the
frontiers of magnonic control. They provide functional reconfigurable platforms
and attractive technological solutions across storage, GHz communications and
neuromorphic computing. Typically, these systems are primarily constrained by
their range of accessible states and the strength of magnon coupling phenomena.
Increasingly, magnetic nanostructures have explored the benefits of expanding
into three dimensions. This has broadened the horizons of magnetic microstate
spaces and functional behaviours, but precise control of 3D states and dynamics
remains challenging.
Here, we introduce a 3D magnonic metamaterial, compatible with
widely-available fabrication and characterisation techniques. By combining
independently-programmable artificial spin-systems strongly coupled in the
z-plane, we construct a reconfigurable 3D metamaterial with an exceptionally
high 16N microstate space and intense static and dynamic magnetic coupling. The
system exhibits a broad range of emergent phenomena including ultrastrong
magnon-magnon coupling with normalised coupling rates of and magnon-magnon cooperativity up to C = 126.4, GHz
mode shifts in zero applied field and chirality-selective magneto-toroidal
microstate programming and corresponding magnonic spectral control
Affordances, constraints and information flows as ‘leverage points’ in design for sustainable behaviour
Copyright @ 2012 Social Science Electronic PublishingTwo of Donella Meadows' 'leverage points' for intervening in systems (1999) seem particularly pertinent to design for sustainable behaviour, in the sense that designers may have the scope to implement them in (re-)designing everyday products and services. The 'rules of the system' -- interpreted here to refer to affordances and constraints -- and the structure of information flows both offer a range of opportunities for design interventions to in fluence behaviour change, and in this paper, some of the implications and possibilities are discussed with reference to parallel concepts from within design, HCI and relevant areas of psychology
Evidence of extreme domain wall speeds under ultrafast optical excitation
Time-resolved ultrafast EUV magnetic scattering was used to test a recent
prediction of >10 km/s domain wall speeds by optically exciting a magnetic
sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of
the diffraction pattern was observed at markedly different timescales compared
to the magnetization quenching. The diffraction pattern distortion shows a
threshold-dependence with laser fluence, not seen for magnetization quenching,
consistent with a picture of domain wall motion with pinning sites. Supported
by simulations, we show that a speed of 66 km/s for highly curved
domain walls can explain the experimental data. While our data agree with the
prediction of extreme, non-equilibrium wall speeds locally, it differs from the
details of the theory, suggesting that additional mechanisms are required to
fully understand these effects.Comment: 5 pages, 4 figures; Supplemental Material: 8 pages, 9 figure
The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification
PURPOSE: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published consensus standardized guidelines for sequence-level variant classification in Mendelian disorders. To increase accuracy and consistency, the Clinical Genome Resource Familial Hypercholesterolemia (FH) Variant Curation Expert Panel was tasked with optimizing the existing ACMG/AMP framework for disease-specific classification in FH. In this study, we provide consensus recommendations for the most common FH-associated gene, LDLR, where >2300 unique FH-associated variants have been identified. METHODS: The multidisciplinary FH Variant Curation Expert Panel met in person and through frequent emails and conference calls to develop LDLR-specific modifications of ACMG/AMP guidelines. Through iteration, pilot testing, debate, and commentary, consensus among experts was reached. RESULTS: The consensus LDLR variant modifications to existing ACMG/AMP guidelines include (1) alteration of population frequency thresholds, (2) delineation of loss-of-function variant types, (3) functional study criteria specifications, (4) cosegregation criteria specifications, and (5) specific use and thresholds for in silico prediction tools, among others. CONCLUSION: Establishment of these guidelines as the new standard in the clinical laboratory setting will result in a more evidence-based, harmonized method for LDLR variant classification worldwide, thereby improving the care of patients with FH
Ultrafast domain dilation induced by optical pumping in ferromagnetic CoFe/Ni multilayers
Ultrafast optical pumping of systems with spatially nonuniform magnetic
textures is known to cause far-from-equilibrium spin transport effects, such as
the broadening of domain-walls. Here, we study the dynamics of labyrinth domain
networks in ferromagnetic CoFe/Ni multilayers subject to a femtosecond optical
pump and find an ultrafast domain dilation by 6% within 1.6 ps. This surprising
result is based on the unambiguous determination of a harmonically-related
shift of ultrafast magnetic X-ray diffraction for the first- and third-order
rings. Domain dilation is plausible from conservation of momentum arguments,
whereby inelastic scattering from a hot, quasi-ballistic, radial current
transfers momentum to the magnetic domains. Our results suggest a potentially
rich variety of unexpected physical phenomena associated with
far-from-equilibrium inelastic electron-magnon scattering processes in the
presence of spin textures
- …