301 research outputs found

    Finite temperature phase transition for disordered weakly interacting bosons in one dimension

    Full text link
    It is commonly accepted that there are no phase transitions in one-dimensional (1D) systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we demonstrate that the 1D gas of short-range interacting bosons in the presence of disorder can undergo a finite temperature phase transition between two distinct states: fluid and insulator. None of these states has long-range spatial correlations, but this is a true albeit non-conventional phase transition because transport properties are singular at the transition point. In the fluid phase the mass transport is possible, whereas in the insulator phase it is completely blocked even at finite temperatures. We thus reveal how the interaction between disordered bosons influences their Anderson localization. This key question, first raised for electrons in solids, is now crucial for the studies of atomic bosons where recent experiments have demonstrated Anderson localization in expanding very dilute quasi-1D clouds.Comment: 8 pages, 5 figure

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Enabling Uniform Computer Interaction Experience for Blind Users through Large Language Models

    Full text link
    Blind individuals, who by necessity depend on screen readers to interact with computers, face considerable challenges in navigating the diverse and complex graphical user interfaces of different computer applications. The heterogeneity of various application interfaces often requires blind users to remember different keyboard combinations and navigation methods to use each application effectively. To alleviate this significant interaction burden imposed by heterogeneous application interfaces, we present Savant, a novel assistive technology powered by large language models (LLMs) that allows blind screen reader users to interact uniformly with any application interface through natural language. Novelly, Savant can automate a series of tedious screen reader actions on the control elements of the application when prompted by a natural language command from the user. These commands can be flexible in the sense that the user is not strictly required to specify the exact names of the control elements in the command. A user study evaluation of Savant with 11 blind participants demonstrated significant improvements in interaction efficiency and usability compared to current practices

    Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius

    Get PDF
    This study reports the expression, purification, and kinetic characterization of a pyruvate decarboxylase (PDC) from Gluconobacter oxydans . Kinetic analyses showed the enzyme to have high affinity for pyruvate (120 μM at pH 5), high catalytic efficiency (4.75×105 M−1 s−1 at pH 5), a pHopt of approximately 4.5 and an in vitro temperature optimum at approximately 55 °C. Due to in vitro thermostablity (approximately 40 % enzyme activity retained after 30 min at 65 °C), this PDC was considered to be a suitable candidate for heterologous expression in the thermophile Geobacillus thermoglucosidasius for ethanol production. Initial studies using a variety of methods failed to detect activity at any growth temperature (45–55 °C). However, the application of codon harmonization (i.e., mimicry of the heterogeneous host’s transcription and translational rhythm) yielded a protein that was fully functional in the thermophilic strain at 45 °C (as determined by enzyme activity, Western blot, mRNA detection, and ethanol productivity). Here, we describe the first successful expression of PDC in a true thermophile. Yields as high as 0.35±0.04 g/g ethanol per gram of glucose consumed were detected, highly competitive to those reported in ethanologenic thermophilic mutants. Although activities could not be detected at temperatures approaching the growth optimum for the strain, this study highlights the possibility that previously unsuccessful expression of pdcs in Geobacillus spp. may be the result of ineffective transcription/translation coupling.Web of Scienc

    Search for Light Dark Matter with NA64 at CERN

    Get PDF
    Thermal dark matter models with particle χ masses below the electroweak scale can provide an explanation for the observed relic dark matter density. This would imply the existence of a new feeble interaction between the dark and ordinary matter. We report on a new search for the sub-GeV χ production through the interaction mediated by a new vector boson, called the dark photon A′, in collisions of 100 GeV electrons with the active target of the NA64 experiment at the CERN SPS. With 9.37×1011 electrons on target collected during 2016-2022 runs NA64 probes for the first time the well-motivated region of parameter space of benchmark thermal scalar and fermionic dark matter models. No evidence for dark matter production has been found. This allows us to set the most sensitive limits on the A′ couplings to photons for masses mA′≲0.35 GeV, and to exclude scalar and Majorana dark matter with the χ-A′ coupling αD≤0.1 for masses 0.001≲mχ≲0.1 GeV and 3mχ≤mA′

    Measurement of the intrinsic hadronic contamination in the NA64−e high-e+/e- purity beam at CERN

    Get PDF
    We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, anti-protons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements

    Discovery of Pod Shatter-Resistant Associated SNPs by Deep Sequencing of a Representative Library Followed by Bulk Segregant Analysis in Rapeseed

    Get PDF
    Background: Single nucleotide polymorphisms (SNPs) are an important class of genetic marker for target gene mapping. As of yet, there is no rapid and effective method to identify SNPs linked with agronomic traits in rapeseed and other crop species. Methodology/Principal Findings: We demonstrate a novel method for identifying SNP markers in rapeseed by deep sequencing a representative library and performing bulk segregant analysis. With this method, SNPs associated with rapeseed pod shatter-resistance were discovered. Firstly, a reduced representation of the rapeseed genome was used. Genomic fragments ranging from 450–550 bp were prepared from the susceptible bulk (ten F2 plants with the silique shattering resistance index, SSRI,0.10) and the resistance bulk (ten F2 plants with SSRI.0.90), and also Solexa sequencingproduced 90 bp reads. Approximately 50 million of these sequence reads were assembled into contigs to a depth of 20-fold coverage. Secondly, 60,396 ‘simple SNPs ’ were identified, and the statistical significance was evaluated using Fisher’s exact test. There were 70 associated SNPs whose –log10p value over 16 were selected to be further analyzed. The distribution of these SNPs appeared a tight cluster, which consisted of 14 associated SNPs within a 396 kb region on chromosome A09. Our evidence indicates that this region contains a major quantitative trait locus (QTL). Finally, two associated SNPs from this region were mapped on a major QTL region

    A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Brassica rapa </it>is an economically important crop and a model plant for studies concerning polyploidization and the evolution of extreme morphology. The multinational <it>B. rapa </it>Genome Sequencing Project (BrGSP) was launched in 2003. In 2008, next generation sequencing technology was used to sequence the <it>B. rapa </it>genome. Several maps concerning <it>B. rapa </it>pseudochromosome assembly have been published but their coverage of the genome is incomplete, anchoring approximately 73.6% of the scaffolds on to chromosomes. Therefore, a new genetic map to aid pseudochromosome assembly is required.</p> <p>Results</p> <p>This study concerns the construction of a reference genetic linkage map for <it>Brassica rapa</it>, forming the backbone for anchoring sequence scaffolds of the <it>B. rapa </it>genome resulting from recent sequencing efforts. One hundred and nineteen doubled haploid (DH) lines derived from microspore cultures of an F1 cross between a Chinese cabbage (<it>B. rapa </it>ssp. <it>pekinensis</it>) DH line (Z16) and a rapid cycling inbred line (L144) were used to construct the linkage map. PCR-based insertion/deletion (InDel) markers were developed by re-sequencing the two parental lines. The map comprises a total of 507 markers including 415 InDels and 92 SSRs. Alignment and orientation using SSR markers in common with existing <it>B. rapa </it>linkage maps allowed ten linkage groups to be identified, designated A01-A10. The total length of the linkage map was 1234.2 cM, with an average distance of 2.43 cM between adjacent marker loci. The lengths of linkage groups ranged from 71.5 cM to 188.5 cM for A08 and A09, respectively. Using the developed linkage map, 152 scaffolds were anchored on to the chromosomes, encompassing more than 82.9% of the <it>B. rapa </it>genome. Taken together with the previously available linkage maps, 183 scaffolds were anchored on to the chromosomes and the total coverage of the genome was 88.9%.</p> <p>Conclusions</p> <p>The development of this linkage map is vital for the integration of genome sequences and genetic information, and provides a useful resource for the international <it>Brassica </it>research community.</p

    Search for pseudoscalar bosons decaying into e+e- pairs in the NA64 experiment at the CERN SPS

    Get PDF
    We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e+e- performed using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e+e- pairs in the nuclear transitions of Be8 and He4 nuclei at the invariant mass ≃17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the "visible mode"configuration with a total statistics corresponding to 8.4×1010 electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter ϵ we also used the data collected in 2016-2018 in the "invisible mode"configuration of NA64 with a total statistics corresponding to 2.84×1011 EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to γ). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space ma-ϵ in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of ϵ in the range 2.1×10-4<ϵ<3.2×10-4 are excluded

    Improved exclusion limit for light dark matter from e+e- annihilation in NA64

    Get PDF
    The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A′ were set by the NA64 experiment for the mass region mA′≲250 MeV, by analyzing data from the interaction of 2.84×1011 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A′ production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e+ beam efforts
    corecore