21 research outputs found

    Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus

    Get PDF
    Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated

    Investigation of the potentiation of the analgesic effects of fentanyl by ketamine in humans: a double-blinded, randomised, placebo controlled, crossover study of experimental pain[ISRCTN83088383]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite preclinical evidence suggesting a synergistic interaction between ketamine and opioids promoting analgesia, several clinical trials have not identified dosing regimens capable of eliciting a benefit in the co-administration of ketamine with opioids.</p> <p>Methods</p> <p>Ten healthy volunteers participated in a double blinded, randomised, placebo controlled, crossover laboratory study in order to determine whether a low dose of ketamine potentiated the antinociceptive effect of fentanyl without causing an increase in sedative effects. A battery of tests was used to assess both nociception and sedation including electrical current, pressure, thermal stimuli, psychometric tests, and both subjective and objective scores of sedation. Target controlled infusions of the study drugs were used. Ketamine and fentanyl were administered alone and in combination in a double-blinded randomised crossover design. Saline was used as the control, and propofol was used to validate the tests of sedation. Cardiovascular and respiratory parameters were also assessed.</p> <p>Results</p> <p>The electrical current pain threshold dose response curve of fentanyl combined with ketamine was markedly steeper than the dose response curve of fentanyl alone. While a ketamine serum concentration of 30 ng/ml did not result in a change in electrical pain threshold when administered alone, when it was added to fentanyl, the combination resulted in greater increase in pain threshold than that of fentanyl administered alone. When nociception was assessed using heat and pressure stimuli, ketamine did not potentiate the anti-nociceptive effect of fentanyl. There was no difference between the sedative effect of fentanyl and fentanyl in combination with ketamine as assessed by both subjective and objective measures of sedation. Cardiovascular and respiratory parameters were unaffected by the study drugs at the doses given.</p> <p>Conclusion</p> <p>A serum concentration of ketamine that did not alter indices of sedation potentiated the antinociceptive effect of fentanyl. This potentiation of antinociception occurred without an increase in sedation suggesting that low steady doses of ketamine (30–120 ng/ml) might be combined with μ opioid agonists to improve their analgesic effect in a clinical setting. (296 words)</p
    corecore