23 research outputs found

    Iron Status Predicts Treatment Failure and Mortality in Tuberculosis Patients: A Prospective Cohort Study from Dar es Salaam, Tanzania

    Get PDF
    Experimental data suggest a role for iron in the course of tuberculosis (TB) infection, but there is limited evidence on the potential effects of iron deficiency or iron overload on the progression of TB disease in humans. The aim of the present analysis was to examine the association of iron status with the risk of TB progression and death.\ud We analyzed plasma samples and data collected as part a randomized micronutrient supplementation trial (not including iron) among HIV-infected and HIV-uninfected TB patients in Dar es Salaam, Tanzania. We prospectively related baseline plasma ferritin concentrations from 705 subjects (362 HIV-infected and 343 HIV-uninfected) to the risk of treatment failure at one month after initiation, TB recurrence and death using binomial and Cox regression analyses. Overall, low (plasma ferritin<30 µg/L) and high (plasma ferritin>150 µg/L for women and>200 µg/L for men) iron status were seen in 9% and 48% of patients, respectively. Compared with normal levels, low plasma ferritin predicted an independent increased risk of treatment failure overall (adjusted RR = 1.95, 95% CI: 1.07 to 3.52) and of TB recurrence among HIV-infected patients (adjusted RR = 4.21, 95% CI: 1.22 to 14.55). High plasma ferritin, independent of C-reactive protein concentrations, was associated with an increased risk of overall mortality (adjusted RR = 3.02, 95% CI: 1.95 to 4.67). Both iron deficiency and overload exist in TB patients and may contribute to disease progression and poor clinical outcomes. Strategies to maintain normal iron status in TB patients could be helpful to reduce TB morbidity and mortality

    Antioxidants Protect Keratinocytes against M. ulcerans Mycolactone Cytotoxicity

    Get PDF
    BACKGROUND: Mycobacterium ulcerans is the causative agent of necrotizing skin ulcerations in distinctive geographical areas. M. ulcerans produces a macrolide toxin, mycolactone, which has been identified as an important virulence factor in ulcer formation. Mycolactone is cytotoxic to fibroblasts and adipocytes in vitro and has modulating activity on immune cell functions. The effect of mycolactone on keratinocytes has not been reported previously and the mechanism of mycolactone toxicity is presently unknown. Many other macrolide substances have cytotoxic and immunosuppressive activities and mediate some of their effects via production of reactive oxygen species (ROS). We have studied the effect of mycolactone in vitro on human keratinocytes--key cells in wound healing--and tested the hypothesis that the cytotoxic effect of mycolactone is mediated by ROS. METHODOLOGY/PRINCIPAL FINDINGS: The effect of mycolactone on primary skin keratinocyte growth and cell numbers was investigated in serum free growth medium in the presence of different antioxidants. A concentration and time dependent reduction in keratinocyte cell numbers was observed after exposure to mycolactone. Several different antioxidants inhibited this effect partly. The ROS inhibiting substance deferoxamine, which acts via chelation of Fe(2+), completely prevented mycolactone mediated cytotoxicity. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that mycolactone mediated cytotoxicity can be inhibited by deferoxamine, suggesting a role of iron and ROS in mycolactone induced cytotoxicity of keratinocytes. The data provide a basis for the understanding of Buruli ulcer pathology and the development of improved therapies for this disease

    Original Abstracts

    No full text
    No Abstrac

    Annual Medical research Day Abstracts

    No full text
    "Promoting health systems research for health strengthening

    COP27 Climate Change Conference: urgent action needed for Africa and the world

    No full text
    No abstract

    Annual Medical Research Day Abstracts

    No full text
    All abstracts contained within the PDF
    corecore