3 research outputs found

    Lateral scale calibration for focus variation microscopy

    Get PDF
    Areal surface texture measuring instruments can be calibrated by determining a set of metrological characteristics currently in the final stages of standardisation. In this paper, amplification, linearity and perpendicularity characteristics have been determined to calibrate the lateral performance of a focus variation microscope. The paper presents a novel and low-cost material measure and procedures that are used to determine the characteristics. The material measure is made of stainless steel with a cross-grating grid of hemispherical grooves. The design, manufacturing and calibration of the material measure are discussed. The (20 Ă— 20) mm grid is measured with and without image stitching. The results show that the proposed material measure and procedures can be used to determine the error of the amplification, linearity and perpendicularity characteristics. In addition, the lateral stage error can be significantly reduced by measurement with image stitching

    Characterisation of the topography of metal additive surface features with different measurement technologies

    Get PDF
    The challenges of measuring the surface topography of metallic surfaces produced by additive manufacturing are investigated. The differences between measurements made using various optical and non-optical technologies, including confocal and focus-variation microscopy, coherence scanning interferometry and x-ray computed tomography, are examined. As opposed to concentrating on differences which may arise through computing surface texture parameters from measured topography datasets, a comparative analysis is performed focussing on investigation of the quality of the topographic reconstruction of a series of surface features. The investigation is carried out by considering the typical surface features of a metal powder-bed fusion process: weld tracks, weld ripples, attached particles and surface recesses. Results show that no single measurement technology provides a completely reliable rendition of the topographic features that characterise the metal powder-bed fusion process. However, through analysis of measurement discrepancies, light can be shed on where instruments are more susceptible to error, and why differences between measurements occur. The results presented in this work increase the understanding of the behaviour and performance of areal topography measurement, and thus promote the development of improved surface characterisation pipelines
    corecore