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Abstract. Areal surface texture measuring instruments can be calibrated by determining a set of 

metrological characteristics currently in the final stages of standardisation. In this paper, amplification, 

linearity and perpendicularity characteristics have been determined to calibrate the lateral performance 

of a focus variation microscope. The paper presents a novel and low-cost material measure and 

procedures that are used to determine the characteristics. The material measure is made of stainless steel 

with a cross-grating grid of hemispherical grooves. The design, manufacturing and calibration of the 

material measure are discussed. The (20 × 20) mm grid is measured with and without image stitching. 

The results show that the proposed material measure and procedures can be used to determine the error 

of the amplification, linearity and perpendicularity characteristics. In addition, the lateral stage error can 

be significantly reduced by measurement with image stitching.  

1. Introduction  

 

Areal surface topography measuring instruments are used to characterise functional surfaces with both 

stochastic and deterministic features [1]. Calibration of the instruments is important to maintain the 

traceability of their measurement results. The draft international standard ISO/DIS 25178 part 600 [2,3] 

recommends the determination of a series of defined metrological characteristics (MCs) to calibrate 

surface topography instruments. These MCs can be used for calibration of all types of surface 

topography instruments that use the areal topography configuration defined in ISO 25178 part 6 [4]. By 

using the defined MCs, different surface topography instruments can be quantitatively compared [3] and 

specified.  Methods for determining the MCs were developed in ISO Technical Committee 213 Working 

Group 16 and early work was published by the National Physical Laboratory [5,6,7] for contact stylus 

instruments, imaging confocal microscopy and coherence scanning interferometry. MCs are defined in 

ISO/DIS 25178 part 600 as ‘characteristics of measuring equipment which may influence the results of 

the measurement’. This definition highlights the importance of MCs, which can contribute immediately 

to the measurement uncertainty [2,8]. The MCs for areal surface topography instruments include: 

measurement noise, flatness deviation, amplification coefficient, linearity deviation, x-y 

perpendicularity deviation, topographic spatial resolution and topography fidelity [2,3]. These MCs can 

be applied to all non-contact (optical) surface topography instruments that measure surface topography 
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directly, including focus variation microscopy (FVM), but not those that measure statistical parameters 

of a surface (i.e. use the area-integrating method) [1]. 

 

FVM is an areal measuring technique [1,9] that operates using optical microscope optics with a limited 

depth of focus objective lens. FVM reconstructs a surface by detecting the height at each position along 

the surface based on the sharpness of a surface image from an image-stack captured during a scan 

through focus in z-direction. The sharpness at a pixel is calculated with respect to their pre-defined 

neighbour pixels. However, FVM has difficulty when measuring surfaces that are highly reflective and 

have a lack of texture (approximately with Ra less than 10 nm but this value is objective dependent) or 

other contrast-producing phenomena [10,11,12]. With such surfaces, it is difficult to calculate the 

sharpness (contrast) for each pixel, corresponding to a specific spatial location on a measured surface, 

with respect to its neighbouring pixels. The calculated sharpness value will be too small to determine 

the height position with the largest sharpness value within the image stack. A replica method is 

commonly used with smooth and texture-lacking surfaces with FVM [10,13], where the replica 

effectively provides the contrast mechanism.  

 

The MCs are determined using material measures and procedures which are currently still under debate 

in the ISO working group [14]. According to the default procedures under development, each MC is 

determined using specified material measures, such as using an optical flat for measurement noise and 

flatness deviation, and a cross-grating for the amplification, linearity and x-y perpendicularity [3]. 

However, there is still a lack of suitable material measures that can be used to determine the MCs for 

FVM, because most commercial material measures have smooth surfaces. Hence, new material 

measures for FVM need to be designed, manufactured and calibrated. 

 

This paper will present a novel and low-cost material measure and procedures to determine the 

amplification coefficient, linearity deviation and x-y perpendicularity deviation for a FVM. The 

determination of the measurement noise and flatness deviation for FVM is discussed elsewhere [15]. 

Two measuring methods (with and without image stitching) have been considered for the calibration of 

the lateral capability. The second section presents the design, manufacturing and calibration of the 

material measures and the third section details the procedures to determine, and the results for, the 

amplification coefficient, linearity deviation and perpendicularity deviation. Finally, the fourth section 

presents the conclusions and future work. 
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2.  Material measure and procedures  

2.1 Material measure 

The determination of the lateral amplification, linearity and perpendicularity characteristics requires a 

calibrated material measure in the form of a two-dimensional (2D) cross-grating [4]. The cross-grating 

can be used to establish the scales of the 𝑥- and 𝑦-axes. FVM cannot measure commonly available cross-

gratings that are smooth. Therefore, a new cross-grating artefact that can be measured with FVM needs 

to be designed and manufactured to calibrate the lateral performance.  

 

The proposed cross-grating artefact has hemispherical groove features (called “calottes” from now 

onwards) produced by a Kern Evo high-precision micro-milling machine from a block of stainless steel 

(grade 303). The artefact design is a square block of size of 28 mm with 5 mm thickness, and contains 

thirty-six calottes with nominal diameters of 0.5 mm. The nominal distance between two calottes is 

4 mm. The artefact is designed to capture the scale error of the 𝑥𝑦-stage for measurements both with 

and without stitching, and is presented in Figure 1, which shows the nominal length and thickness of the 

artefact. The thirty-six calottes are in the form of a 6 × 6 grid. The total area of the grid is (24×24) mm. 

This selection is based on common multiple image-field measurements that are usually within an area 

from (3×3) mm to (15×15) mm.  

 

Firstly, a face milling process, using a 6 mm diameter carbide end mill, was applied to flatten the top 

surface of the block. The spindle speed and the feedrate of the face milling process were 5000 rpm and 

300 mm per minute, respectively. Secondly, the calotte features were machined by a 0.5 mm diameter 

carbide ball nose mill with the same spindle speed and a feedrate. The final surface texture for the top 

face of the artefact was achieved with a lapping process using a Kemet LM15 lapping machine. The 

artefact was made of stainless steel to create a surface with texture that complies with the FVM 

requirement. Figure 2 shows the manufactured cross-grating artefact. The Sa of the manufactured 

artefact is (0.357±0.004) µm using nesting indices of 𝑆-filter = 2.5 µm and 𝐿-filter = 250 µm. 
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Figure 1: The artefact design. 

 

 

Figure 2:The manufactured artefact. 

 

2.2 Calibration of the material measures 

In order to calibrate the distances between the centres of the calottes of the cross-grating, a Zeiss O-

Inspect non-contact coordinate measuring machine (CMM) was used with a maximum permissible error 

specification of 𝐸𝐿,𝑀𝑃𝐸 = ±(1.6 + 𝐿 300⁄ ) μm, where 𝐿 is in millimetres. This CMM is periodically 

performance verified to assure that it operates within its specification 𝐸𝐿,𝑀𝑃𝐸. According to the 

specification, the CMM has one-magnitude higher accuracy for its 𝑥- and 𝑦-stages compared to that of 

the FVM, so that the distances between the centre of the calottes measured by the CMM can be used as 

the length reference, that is traceable via a gauge block measurement, for the distances measured by 

FVM. The calottes’ centre measurements were carried out in four different positions with different 

orientations at each position. The orientation is changed by rotating the artefact by 90° clock-wise for 

each position. Measurements were repeated five times for each calotte at each position. With this 
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strategy (ISO/TS 15530-2) [16], the volumetric error of the CMM is taken into account as a contributor 

for the combined standard uncertainty estimation of the artefact’s measurement results. Figure 3 shows 

the artefact calibration with the CMM, where one of the four artefact calibration positions is shown. The 

artefact position is not parallel to the CMM’s x- and y-axes (skewed position) so that the CMM will 

move both the x- and y-axes to reach each calotte. By moving both axes, the errors from both axes are 

taken into account as influence factors in the uncertainty estimation of the calottes’ centre 

measurements. The callotes’ centre measurements were carried out by the CMM optical-head with a 2D 

vision system. For the traceability, the measurement of a calibrated gauge block was carried out by using 

the tactile sensor of the CMM.  

 

The location of the centre of each calotte was measured and the centre distances between pairs of calottes 

were calculated. The centre locations are obtained by an image processing algorithm that extracts the 

points of the detected circle of callotes and associates a circle geometry to the extracted points to obtain 

the centre location of the callotes. Table 1 shows details of the uncertainty estimation for the centre 

distance and maximum combined uncertainty of a distance between two calottes on the artefact. In Table 

1, all influence factors are detailed. The factors consider the CMM repeatability, CMM geometric error, 

temperature variation and uncertainty for the length measurement of a Grade 1 gauge block. The 

measurement uncertainty of the length (the centre distance between two calottes) was estimated 

according to ISO/DTS 15530-2 for calibration with a CMM [16]. Traceability of the calibration results 

is established with a substitution measurement of the gauge block, with the tactile sensor of the CMM, 

with nominal length 4 mm (equal to the nominal length being calibrated).  

 

Table 1: All influence factors of the calibration process. The calculation for the largest uncertainty 

among all the centre distances is shown. 

Sources 

 

Value /𝛍𝐦 

 

Description 

urep 0.817 

Influence factor considering the CMM repeatability, part property 

(form, texture), sampling strategy, contamination of the surface, etc. 

(Type A). 

ugeo 0.316 
Influence factor considering CMM geometric error, stylus error, tip 

error, fixturing error and alignment error (Type A). 

ucorr 0.052 

Influence factor considering the length error correction applied to the 

length measurement (only applied for distance/length and size 

measurement) (Type B). 

utemp 0.005 
Influence factor due to thermal variation and error of coefficient 

thermal expansion of the measured part (Type B). 

ugaugeblock 0.045 
Influence factor from the measurement of the calibrated gauge block 

(Grade 1 gauge block) (Type B). 



6 

 

utotal  0.88 Combined standard uncertainty 

 

 

 

Figure 3: The artefact calibration with the CMM. 

 

2.3 Experimental design 

Two objective lenses of 5× and 10× magnifications have been chosen to measure the cross-grating 

artefact in 𝑥- (horizontal), 𝑦- (vertical) and diagonal directions. The image fields of the 5× and 10× 

objectives are (2.82 × 2.82) mm and (1.62 × 1.62) mm, respectively. The objectives have been chosen 

to give a relatively large size of image field. The area of measurements are larger than the image field 

of both the objectives. The measurements are carried out at one height (𝑧 −direction) location (at the 

height of the instrument table where parts are placed) as the calibration is focused on the lateral 

performance of the FVM. Four measurement types have been determined: measurement in horizontal, 

vertical and diagonal directions (see Figure 4), and measurements for the whole calottes grid. Each 

measurement type is replicated three times and averaged to reduce random error. Both stitching and 

non-stitching measurement methods are applied. With stiching, the surfaces in between two callotes are 

measured and with non-stitching, only the callotes’ centres are determined, without measuring the 

surfaces in between. The purpose of investigating the stitching measurements is to study the effect of 

the stitching algorithm with respect to the lateral stage accuracy. The stitching measurements involve 

the measurement of multiple image-fields that overlap with each other and the point registration of the 

overlapped image-fields to reduce the error of the lateral stage. The measurements from the horizontal 

and vertical directions are used to calculate the perpendicularity error. For amplification and linearity in 

2D, all the calottes are measured only with a stitching method, with both 5× and 10× objective lens 

magnifications, and 2D error maps are presented. 
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Figure 4: Horizontal (H), vertical (V) and diagonal (D) directions of the measurements. 

3. Lateral scale calibration results 

3.1 Amplification and linearity deviation 

The amplification and linearity of the xy-stage are determined by calculating the errors between two 

calottes’ centres from measurements in the x-, y- and diagonal directions. The callote centres are 

calculated as the centre of a sphere associated to the 3D point cloud of the callottes. An error is defined 

as the difference between a calibrated length (measured by CMM) and a length measured by FVM. The 

length is the distance between two calottes’ centres. The results show different errors for the 

measurements carried out in different measuring directions with both the objectives 5× and 10× and 

with and without stitching. In addition, the results show that the choice of the different objective lenses 

does not significantly affect the error, but the use of stitching does have a significant effect 

  

Figure 5, Figure 6  and Figure 7 show the errors of the length measurements with the 5× objective lens 

for the horizontal, vertical and diagonal directions respectively. From Figure 5 and Figure 6, it can be 

seen that the average length errors measured with stitching are reduced by up to 52 % and 25 % for the 

𝑥- and 𝑦-directions respectively, compared to the errors obtained from the measurements without 

stitching. Similarly, Figure 8, Figure 9 and Figure 10 show the errors for the measurements with the 10× 

objective lens for horizontal, vertical and diagonal directions respectively. From Figure 8 and Figure 9, 

the average length errors can be reduced by up to 62 %, and 10 %, for 𝑥- and 𝑦-directions respectively, 

for measurement with stitching compared to  without stitching. The length errors in the diagonal 

direction obtained from both the 5× and 10× objective lenses are similar for both stitching and non-

stitching measurement strategies. The results show that the stitching algorithm is only effective for 

measurement in the single x- and y-directions, but is not as effective in the diagonal direction. 
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From the non-stitching measurements with both the 5× and 10× objective lenses, the results show that 

the lateral error of the stage is the largest in the 𝑥-direction. Since the non-stitching strategy measures 

each calotte separately to calculate their centre positions, their errors cannot be numerically 

compensated. Numerical compensations are applied by stitching overlapping surfaces when the calottes 

are measured. The measurement results obtained by the 10× objective lens with the stitching method 

have lower errors than the measurements obtained by the 5× objective lens. Lager numbers of images 

for stitching are obtained to reconstruct the measured surfaces with the 10× objective lens due to a 

smaller field of view. Subsequently, with larger numbers of images for stitching, compensation of the 

stage’s error can be improved so that the measurement error is reduced. The higher error of the non-

stitching method may due to the backlash of the xy-stage screw thread. The errors from non-stitching 

measurement increase linearly proportional to the measured length, which is typical for the backlash of 

a linear stage [17].  

 

The measurement uncertainty of length errors considers several influence factors: the standard error 

from measurement repetitions, the uncertainty of the length calibration, the error due to the material 

expansion and the error in the estimation of the coefficient of the material’s thermal expansion 

coefficient. Table 2 shows the influence factors that contribute to the measurement uncertainty. In Table 

2, the largest uncertainty estimation corresponding to a 20 mm length measurement is shown. The 

combined standard uncertainty for the 20 mm length measurement is 1.48 μm.  

 

 

Figure 5: Results of the error calculation for the 5× objective in the horizontal direction 
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Figure 6: Results of the error calculation for the 5× objective in the vertical direction. 

 

 

Figure 7: Results of the error calculation for the 5х objective in the diagonal direction. 
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Figure 8: Results of the error calculation for the10х objective in the horizontal direction. 

 

 

Figure 9: Results of the error calculation for the 10 х objective in the vertical direction. 
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Figure 10: Results of the error calculation for the 10х objective in the diagonal direction. 

 

Table 2: Measurement uncertainty estimation and its influence factors. The shown estimated 

combined uncertainty is the largest uncertainty estimation among the errors measured with the 5× and 

10× objective lenses corresponding to a 20 mm length measurement. 

Uncertainty 

contributor 

Value / 𝛍𝐦 Description 

urep 1.17 Standard error from multiple measurements (Type A). 

utemp 0.23 Uncertainty due to stainless steel coefficient of thermal expansion 

(CTE) 11.7 ×  10−6 K−1 and ΔT =1 °C) (Type B). 

uCTE 0.023 Uncertainty due to error in the CTE estimation (10 % CTE) (Type B). 

utrace 0.88 Uncertainty of calibration of the length (Type B). 

utotal 1.48 Combined uncertainty 

 

  

According to the results of an analysis of variance (ANOVA), the length measurement errors obtained 

with the 5× and 10× objectives are statistically similar for all the measurements in x-, y- and diagonal-

directions. The results show that the errors are mostly contributed by the performance of the xy-stage. 

Therefore, changing the objective may not significantly affect the results of the calibration. Giusca et al. 

[6] also reported that errors of amplification, linearity and perpendicularity of the xy-stage of other 

instruments are not affected by the magnification of the objectives. The results suggest that a low 

magnification lens can be used to determine the amplification and linearity errors of the xy-stage. By 

using a low magnification lens, a larger field of view can be obtained so that measurement time can be 

reduced.  
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In summary, the results of the amplification coefficient (𝛼) and linearity deviation (l), following their 

definition in ISO/DIS 25178 [2], are numerically presented in Table 3. From Table 3, the calculated 

amplification coefficients show that the measurements with stitching tend to decrease the measured 

distance and the measurements without stitching tend to increase the measured distance between the 

centres of two callottes. The amplification coefficients calculated from the measurements with stitching 

have value less than one unity, meaning the measured distances are shorter than the calibrated distance. 

In contrast, the coefficients calculated from measurements without stitching have values more than 

unity, meaning the measured distances are longer than the calibrated distances. From the calculated 

linearity deviation shown in Table 3, the results show that, even though the measurements with stitching 

decrease the stage errors, they also increase the non-linearity. It is worth noting that the stage error and 

linearity deviation are different. The stage errors show the difference between a measured and calibrated 

distance between two callottes’ centres, while linearity deviations show the maximum difference 

between the measured data and the line from which the amplification coefficient is derived [2]. 

 

Table 3: The calculated values of amplification coefficient and linearity deviation. 

  5× 10× 

Amplification coefficeint (α) stitching non-stitching stitching non-stitching 

αx 0.99987 1.0007 0.99992 1.00069 

αy 0.99971 1.00016 0.99982 1.00015 

αdiagonal  0.9998 1.0004 0.99983 1.00045 

Linearity deviation (l) stitching non-stitching stitching non-stitching 

lx/µm  1.24 0.51 0.41 0.21 

ly /µm 0.84 0.60 0.61 0.42 

ldiagonal /µm 1.47 0.51 0.51 0.73 

 

3.2 Perpendicularity deviation 

The perpendicularity deviation is obtained by calculating the differences of the angles between the x- 

and y-axes from the CMM measured data and from the FVM measured data. For the perpendicularity 

deviation, the calottes’ centre locations are estimated from the measurements in the 𝑥- and 𝑦-directions, 

using stitching and non-stitching strategies. Three repeated measurements are carried out for stitching 

and non-stitching measurements to estimate the calottes’ centre locations. From the estimated calottes’ 

centre locations, least-square lines are fitted to the centre locations in both the 𝑥- and 𝑦- directions. The 

perpendicularity deviation the 5× and 10× objective lenses are 0.46˚ and 0.22˚for the measurements with 

stitching, and 0.22˚ and 0.19˚ for the measurements without stitching, respectively. Table 4 shows the 
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results of all perpendicularity deviations. From Table 4, the maximum differences for the 

perpendicularity deviation for both stitching and non-stitching measuring strategies, and both the 

objective lenses are around ± 0.2˚. Giusca et al. [6] also found a similar perpendicularity deviation of 

0.3˚ with a coherence scanning interferometer.  

 

Table 4: Results of perpendicularity deviation (± standard deviation of the mean). 

 5×  

Stitching / ˚  

5×  

Non-stitching / ˚ 

10× 

 Stitching / ˚                    

10×  

Non-stitching / ˚ 

FVM 90.46 ±0.53 89.77 ±0.20 90.22 ±0.07 90.19 ±0.46 

CMM 89.99±0.01 

𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞  0.46 0.22 0.22 0.19 

  

3.3 Amplification and linearity errors in 2D 

The amplification and linearity deviation in 𝑥𝑦-directions are presented as 2D error maps. The 2D error 

maps for measurements with the 5× and 10× objectives lenses are shown in Figure 11 and Figure 12 

respectively. For all the measurements, stitching is employed and the measurements cover the whole 

surface of the artefact. All the calottes’ centre locations are calculated from the average of three repeated 

measurements. The coordinates of the calculated centres are mathematically aligned, by least-squares 

fitting a line to the callottes’ central position, calculating the angle of the fitted line with respect to the 

x-axis of the reference coordinate system and rotating all the central positions based on the calculated 

angle, to remove errors due to fixturing and placement when setting up the artefact for the measurements. 

After the alignment, all centre locations from both the measurements of CMM and FVM are registered 

and overlapped, by translating the coordinate system of all the centre positions (from both the CMM 

and FVM measurements) to the centroid position of the centre location, based on their centroid locations 

[18]. After all the centre locations have been registered and overlapped, the errors of each centre’s 

location on the grid are calculated as the difference between the centre locations measured with the FVM 

and centre locations measured with the CMM. The centre locations measured with the CMM are used 

as reference values. The maximum differences between the CMM and FVM measurements with the 5× 

and 10× objective lenses are 7.6 µm and 5.2 µm, respectively. 
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Figure 11: 2D error map for the measurement obtained with the 5× objective lens (the FVM data is 

red and the CMM is blue). 

 

 

Figure 12: 2D error map for the measurement obtained with the 10× objective lens (the FVM data is 

red and the CMM is blue). 

From the 2D error maps, it can be seen that the measurement errors with stitching, for both the 5× and 

10× objectives lenses, are generally 15 % higher than the errors in the single axis measurements with 

stitching. The increase of the errors can be attributed to the contribution of both the x- and y-axis errors 

for the 2D measurements. 
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4. Conclusion and future work 

 

This paper presents the calibration of the lateral scale for FVM by determining its amplification, linearity 

and perpendicularity characteristics. A novel and low-cost calibrated cross-grating artefact, consisting 

of a grid of calottes, and procedures for the determination of linearity, amplification and perpendicularity 

characteristics have been proposed. As part of this study for determining the characteristics, two 

objective lenses of 5× and 10× were used to measure the proposed cross-grating artefact with both 

stitching and non-stitching strategies. Measurements in the horizontal, vertical and diagonal directions, 

along with measurements of the entire grid of calottes, were carried out. The results from the 

measurements of the proposed cross-grating artefact indicate that: 

1. Measurements with stitching can reduce errors in the 𝑥- and 𝑦-directions, but not in the diagonal 

direction. 

2. Measurements in 2D direction has 15 % larger errors than measurements in only one direction. 

3. Measurements with stitching can significantly reduce lateral stage error, but increase the non-

linearity of the error. 

 

Future research will include designing and manufacturing a cross-grating artefact that can be measured 

within one image field so that amplification, linearity and perpendicularly characteristics can be 

determined while excluding lateral stage errors. Further work will investigate how to determine the 

remaining metrological characteristics for FVM, i.e. the topographic spatial resolution and topography 

fidelity. 
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