9,605 research outputs found
Superconductivity under pressure in the Dirac semimetal PdTe2
The Dirac semimetal PdTe was recently reported to be a type-I
superconductor (1.64 K, mT) with unusual
superconductivity of the surface sheath. We here report a high-pressure study,
GPa, of the superconducting phase diagram extracted from
ac-susceptibility and transport measurements on single crystalline samples.
shows a pronounced non-monotonous variation with a maximum 1.91 K around 0.91 GPa, followed by a gradual decrease to 1.27 K at 2.5 GPa.
The critical field of bulk superconductivity in the limit ,
, follows a similar trend and consequently the -curves
under pressure collapse on a single curve: .
Surface superconductivity is robust under pressure as demonstrated by the large
superconducting screening signal that persists for applied dc-fields . Surprisingly, for GPa the superconducting transition
temperature at the surface is larger than of the bulk. Therefore
surface superconductivity may possibly have a non-trivial nature and is
connected to the topological surface states detected by ARPES. We compare the
measured pressure variation of with recent results from band structure
calculations and discuss the importance of a Van Hove singularity.Comment: manuscript 9 pages with 8 figures + supplemental material 3 pages
with 6 figure
Integer Quantum Hall Effect with Realistic Boundary Condition : Exact Quantization and Breakdown
A theory of integer quantum Hall effect(QHE) in realistic systems based on
von Neumann lattice is presented. We show that the momentum representation is
quite useful and that the quantum Hall regime(QHR), which is defined by the
propagator in the momentum representation, is realized. In QHR, the Hall
conductance is given by a topological invariant of the momentum space and is
quantized exactly. The edge states do not modify the value and topological
property of in QHR. We next compute distribution of current based
on effective action and find a finite amount of current in the bulk and the
edge, generally. Due to the Hall electric field in the bulk, breakdown of the
QHE occurs. The critical electric field of the breakdown is proportional to
and the proportional constant has no dependence on Landau levels in
our theory, in agreement with the recent experiments.Comment: 48 pages, figures not included, some additions and revision
Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering
Metallic liquid silicon at 1787K is investigated using x-ray Compton
scattering. An excellent agreement is found between the measurements and the
corresponding Car-Parrinello molecular dynamics simulations. Our results show
persistence of covalent bonding in liquid silicon and provide support for the
occurrence of theoretically predicted liquid-liquid phase transition in
supercooled liquid states. The population of covalent bond pairs in liquid
silicon is estimated to be 17% via a maximally-localized Wannier function
analysis. Compton scattering is shown to be a sensitive probe of bonding
effects in the liquid state.Comment: 5pages, 3 postscript figure
Effect of co-doping of donor and acceptor impurities in the ferromagnetic semiconductor Zn1-xCrxTe studied by soft x-ray magnetic circular dichroism
We have performed x-ray absorption spectroscopy (XAS) and x-ray magnetic
circular dichroism (XMCD) studies of the diluted ferromagnetic semiconductor
ZnCrTe doped with iodine (I) or nitrogen (N),
corresponding to electron or hole doping, respectively. From the shape of the
Cr absorption peak in the XAS spectra, it was concluded that Cr ions in
the undoped, I-doped and lightly N-doped samples are divalent (Cr),
while Cr and trivalent (Cr) coexist in the heavily N-doped
sample. This result indicates that the doped nitrogen atoms act as acceptors
but that doped holes are located on the Cr ions. In the magnetic-field
dependence of the XMCD signal at the Cr absorption edge, ferromagnetic
behaviors were observed in the undoped, I-doped, and lightly N-doped samples,
while ferromagnetism was considerably suppressed in heavily N-doped sample,
which is consistent with the results of magnetization measurements.Comment: Accepted in Journal of Physics: Condensed Matte
Photogenerated Carriers in SrTiO3 Probed by Mid-Infrared Absorption
Infrared absorption spectra of SrTiO have been measured under
above-band-gap photoexcitations to study the properties of photogenerated
carriers, which should play important roles in previously reported photoinduced
phenomena in SrTiO. A broad absorption band appears over the entire
mid-infrared region under photoexcitation. Detailed energy, temperature, and
excitation power dependences of the photoinduced absorption are reported. This
photo-induced absorption is attributed to the intragap excitations of the
photogenerated carriers. The data show the existence of a high density of
in-gap states for the photocarriers, which extends over a wide energy range
starting from the conduction and valence band edges.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
The long-time dynamics of two hydrodynamically-coupled swimming cells
Swimming micro-organisms such as bacteria or spermatozoa are typically found
in dense suspensions, and exhibit collective modes of locomotion qualitatively
different from that displayed by isolated cells. In the dilute limit where
fluid-mediated interactions can be treated rigorously, the long-time
hydrodynamics of a collection of cells result from interactions with many other
cells, and as such typically eludes an analytical approach. Here we consider
the only case where such problem can be treated rigorously analytically, namely
when the cells have spatially confined trajectories, such as the spermatozoa of
some marine invertebrates. We consider two spherical cells swimming, when
isolated, with arbitrary circular trajectories, and derive the long-time
kinematics of their relative locomotion. We show that in the dilute limit where
the cells are much further away than their size, and the size of their circular
motion, a separation of time scale occurs between a fast (intrinsic) swimming
time, and a slow time where hydrodynamic interactions lead to change in the
relative position and orientation of the swimmers. We perform a multiple-scale
analysis and derive the effective dynamical system - of dimension two -
describing the long-time behavior of the pair of cells. We show that the system
displays one type of equilibrium, and two types of rotational equilibrium, all
of which are found to be unstable. A detailed mathematical analysis of the
dynamical systems further allows us to show that only two cell-cell behaviors
are possible in the limit of , either the cells are attracted to
each other (possibly monotonically), or they are repelled (possibly
monotonically as well), which we confirm with numerical computations
Akeno 20 km (2) air shower array (Akeno Branch)
As the first stage of the future huge array, the Akeno air shower array was expanded to about 20 sq. km. by adding 19 scintillation detectors of 2.25 sq m area outside the present 1 sq. km. Akeno array with a new data collection system. These detectors are spaced about 1km from each other and connected by two optical fiber cables. This array has been in partial operation from 8th, Sep. 1984 and full operation from 20th, Dec. 1984. 20 sq m muon stations are planned to be set with 2km separation and one of them is now under construction. The origin of the highest energy cosmic rays is studied
- …