10 research outputs found
Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice
High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity
Cross-talk between high light stress and plant defence to the two-spotted spider mite in Arabidopsis thaliana
Little is known about how plants deal with arthropod herbivores under the fluctuating light intensity and spectra which occur in natural environments. Moreover, the role of simultaneous stress such as excess light (EL) in the regulation of plant responses to herbivores is poorly characterized. In the current study, we focused on a mite-herbivore, specifically, the two-spotted spider mite (TSSM), which is one of the major agricultural pests worldwide. Our results showed that TSSM-induced leaf damage (visualized by trypan blue staining) and oviposition rate (measured as daily female fecundity) decreased after EL pre-treatment in wild-type Arabidopsis plants, but the observed responses were not wavelength specific. Thus, we established that EL pre-treatment reduced Arabidopsis susceptibility to TSSM infestation. Due to the fact that a portion of EL energy is dissipated by plants as heat in the mechanism known as non-photochemical quenching (NPQ) of chlorophyll fluorescence, we tested an Arabidopsis npq4-1 mutant impaired in NPQ. We showed that npq4-1 plants are significantly less susceptible to TSSM feeding activity, and this result was not dependent on light pre-treatment. Therefore, our findings strongly support the role of light in plant defence against TSSM, pointing to a key role for a photo-protective mechanism such as NPQ in this regulation. We hypothesize that plants impaired in NPQ are constantly primed to mite attack, as this seems to be a universal evolutionarily conserved mechanism for herbivores
Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size
The effects of photosystem II antenna size on reaction center-type energy-dependent quenching (qE) were examined in rice plants grown under two different light intensities using both wild type and qE-less (OsPsbS knockout) mutant plants. Reaction center-type qE was detected by measuring non-photochemical quenching at 50 mu mol photons m(-2) s(-1) white light intensity. We observed that in low light-grown rice plants, reaction center-type qE was higher than in high light-grown plants, and the amount of reaction center-type qE did not depend on zeaxanthin accumulation. This was confirmed in Arabidopsis npq1-2 mutant plants that lack zeaxanthin due to a mutation in the violaxanthin de-epoxidase enzyme. Although the electron transport rate measured at a light intensity of 50 mu mol photons m(-2) s(-1) was the same in high light- and low light-grown wild type and mutant plants lacking PsbS protein, the generation of energy-dependent quenching was completely impaired only in mutant plants. Analyses of the pigment content, Lhcb proteins and D1 protein of PSII showed that the antenna size was larger in low light-grown plants, and this correlated with the amount of reaction center-type qE. Our results mark the first time that the reaction center-type qE has been shown to depend on photosystem II antenna size and, although it depends on the existence of PsbS protein, the extent of reaction center-type qE does not correlate with the transcript levels of PsbS protein. The presence of reaction center-type energy-dependent quenching, in addition to antenna-type quenching, in higher plants for dissipation of excess light energy demonstrates the complexity and flexibility of the photosynthetic apparatus of higher plants to respond to different environmental conditions. (c) 2007 Elsevier B.V. All rights reserved.X1115sciescopu