39 research outputs found

    Investigating Cell Surface Markers and Differentiation Potential of Compact Bone-Derived Mesenchymal Stem Cells

    Get PDF
    Background: The differentiation potential of mesenchymal stem cells (MSCs) derived from the bone-tissue to multiple lineages is not clear. Objective: This study was conducted to investigate the surface antigen expression and multilineage stem cell potential of the cells derived from culture of collagenase digested marrow-free compact bones of C57BL/6 mouse. Materials & Methods: Long bones of C57BL/6 mouse (n=6) were collected aseptically and bone marrow was flushed out. Collagenase-digested bone fragments were washed and cultured in plastic flasks. The plastic-adherent fibroblast-like spindle-shaped cells were cultured sequentially in multiple passages in low-glucose DMEM (Dulbecco’s Modified Eagle’s Medium) supplemented with 15% FBS (Foetal Bovine Serum) and antibiotics in a 37°C incubator with 5% CO2. Immunophenotyping for cell surface markers was done using flow cytometry. The cells were differentiated into the osteoblastic, adipogenic and chondrogenic lineages. Results: The culture of the adherent cells exhibited active proliferation and multiplication in consequent passages. The cultured cells revealed evidence of adipogenic and osteogenic differentiation confirmed by staining with oil red O and von Kossa stains. Under flow cytometry observation, a significant proportion of cultured cells expressed CD29 and stem cell antigen (Sca-1). Only 9.8% cells showed expression of CD105. These MSCs exhibited low ability in chondrogenic differentiation, which can potentially be attributed to their lack of CD105 expression. Lack of expression of CD45 showed evidence of absence of hematopoietic stem cells. Conclusion: This study showed that murine compact bone-chip culture can yield MSCs with significant proliferation capacity. The cells displayed the ability to differentiate into osteoblast and adipocyte lineages

    Circular DNA Intermediate in the Duplication of Nile Tilapia vasa Genes

    Get PDF
    vasa is a highly conserved RNA helicase involved in animal germ cell development. Among vertebrate species, it is typically present as a single copy per genome. Here we report the isolation and sequencing of BAC clones for Nile tilapia vasa genes. Contrary to a previous report that Nile tilapia have a single copy of the vasa gene, we find evidence for at least three vasa gene loci. The vasa gene locus was duplicated from the original site and integrated into two distant novel sites. For one of these insertions we find evidence that the duplication was mediated by a circular DNA intermediate. This mechanism of gene duplication may explain the origin of isolated gene duplicates during the evolution of fish genomes. These data provide a foundation for studying the role of multiple vasa genes in the development of tilapia gonads, and will contribute to investigations of the molecular mechanisms of sex determination and evolution in cichlid fishes

    Human recombinant follicle stimulating hormone (rFSH) compared to urinary human menopausal gonadotropin (HMG) for ovarian stimulation in assisted reproduction: a literature review and cost evaluation

    Get PDF
    BACKGROUND: Gonadotropins are protein hormones which are central to the complex endocrine system that regulates normal growth, sexual development, and reproductive function. There is still a lively debate on which type of gonadotropin medication should be used, either human menopausal gonadotropin or recombinant follicle-stimulating hormone. The objective of the study was to perform a systematic review of the recent literature to compare recombinant follicle-stimulating hormone to human menopausal gonadotropin with the aim to assess any differences in terms of efficacy and to provide a cost evaluation based on findings of this systematic review. METHODS: The review was conducted selecting prospective, randomized, controlled trials comparing the two gonadotropin medications from a literature search of several databases. The outcome measure used to evaluate efficacy was the number of oocytes retrieved per cycle. In addition, a cost evaluation was performed based on retrieved efficacy data. RESULTS: The number of oocytes retrieved appeared to be higher for human menopausal gonadotropin in only 2 studies while 10 out of 13 studies showed a higher mean number of oocytes retrieved per cycle for recombinant follicle-stimulating hormone. The results of the cost evaluation provided a similar cost per oocyte for both hormones. CONCLUSIONS: Recombinant follicle-stimulating hormone treatment resulted in a higher oocytes yield per cycle than human menopausal gonadotropin at similar cost per oocyte

    Genomic signatures of local adaptation reveal source-sink dynamics in a high gene flow fish species

    Get PDF
    Understanding source-sink dynamics is important for conservation management, particularly when climatic events alter species' distributions. Following a 2011 'marine heatwave' in Western Australia, we observed high recruitment of the endemic fisheries target species Choerodon rubescens, towards the cooler (southern) end of its distribution. Here, we use a genome wide set of 14 559 single-nucleotide polymorphisms (SNPs) to identify the likely source population for this recruitment event. Most loci (76%) showed low genetic divergence across the species' range, indicating high levels of gene flow and confirming previous findings using neutral microsatellite markers. However, a small proportion of loci showed strong patterns of differentiation and exhibited patterns of population structure consistent with local adaptation. Clustering analyses based on these outlier loci indicated that recruits at the southern end of C. rubescens' range originated 400 km to the north, at the centre of the species' range, where average temperatures are up to 3 °C warmer. Survival of these recruits may be low because they carry alleles adapted to an environment different to the one they now reside in, but their survival is key to establishing locally adapted populations at and beyond the range edge as water temperatures increase with climate change

    Investigating Cell Surface Markers and Differentiation Potential of Compact Bone-Derived Mesenchymal Stem Cells

    No full text
    Background: The differentiation potential of mesenchymal stem cells (MSCs) derived from the bone-tissue to multiple lineages is not clear. Objective: This study was conducted to investigate the surface antigen expression and multilineage stem cell potential of the cells derived from culture of collagenase digested marrow-free compact bones of C57BL/6 mouse. Materials & Methods: Long bones of C57BL/6 mouse (n=6) were collected aseptically and bone marrow was flushed out. Collagenase-digested bone fragments were washed and cultured in plastic flasks. The plastic-adherent fibroblast-like spindle-shaped cells were cultured sequentially in multiple passages in low-glucose DMEM (Dulbecco’s Modified Eagle’s Medium) supplemented with 15% FBS (Foetal Bovine Serum) and antibiotics in a 37°C incubator with 5% CO2 . Immunophenotyping for cell surface markers was done using flow cytometry. The cells were differentiated into the osteoblastic, adipogenic and chondrogenic lineages. Results: The culture of the adherent cells exhibited active proliferation and multiplication in consequent passages. The cultured cells revealed evidence of adipogenic and osteogenic differentiation confirmed by staining with oil red O and von Kossa stains. Under flow cytometry observation, a significant proportion of cultured cells expressed CD29 and stem cell antigen (Sca-1). Only 9.8% cells showed expression of CD105. These MSCs exhibited low ability in chondrogenic differentiation, which can potentially be attributed to their lack of CD105 expression. Lack of expression of CD45 showed evidence of absence of hematopoietic stem cells. Conclusion: This study showed that murine compact bone-chip culture can yield MSCs with significant proliferation capacity. The cells displayed the ability to differentiate into osteoblast and adipocyte lineages

    A systematic immunohistochemical survey of the distribution patterns of GH, prolactin, somatolactin, β–TSH, β–FSH, β–LH, ACTH, and α–MSH in the adenohypophysis of Oreochromis niloticus , the Nile tilapia

    Full text link
    Fish pituitary plays a central role in the control of growth, development, reproduction and adaptation to the environment. Several types of hormone-secreting adenohypophyseal cells have been characterised and localised in diverse teleost species. The results suggest a similar distribution pattern among the species investigated. However, most studies deal with a single hormone or hormone family. Thus, we studied adjacent sections of the pituitary of Oreochromis niloticus, the tilapia, by conventional staining and immunohistochemistry with specific antisera directed against growth hormone (GH), prolactin (PRL), somatolactin (SL), thyrotropin (beta-TSH), follicle-stimulating hormone (beta-FSH), luteinising hormone (beta-LH), adrenocorticotropic hormone (ACTH) and melanocyte-stimulating hormone (alpha-MSH). The pituitary was characterised by a close interdigitating neighbourhood of neurohypophysis (PN) and adenohypophysis. PRL-immunoreactive and ACTH-immunoreactive cells were detected in the rostral pars distalis. GH-immunoreactive cells were present in the proximal pars distalis (PPD). A small region of the PPD contained beta-TSH-immunoreactive cells, and beta-LH-immunoreactive cells covered approximately the remaining parts. Centrally, beta-FSH-immunoreactive cells were detected in the vicinity of the GH-containing cells. Some of these cells also displayed beta-LH immunoreactivity. The pars intermedia was characterised by branches of the PN surrounded by SL-containing and alpha-MSH-immunoreactive cells. The ACTH and alpha-MSH antisera were observed to cross-react with the respective antigens. This cross-reactivity was abolished by pre-absorption. We present a complete map of the distinct localisation sites for the classical pituitary hormones, thereby providing a solid basis for future research on teleost pituitary
    corecore