3,339 research outputs found

    EXPLOITING TIME DIVERSITY TO IMPROVE BLOCK SPREAD OFDM

    Full text link
    This paper presents a new method to improve on block spread OFDM by exploiting time diversity to ensure that the blocks are independent and uncorrelated. Simulation results have shown significant improvement over conventional OFDM and Block Spread OFDM

    STUDY OF SPREAD CODES WITH BLOCK SPREAD OFDM

    Full text link
    This paper presents the study undertaken with block spread OFDM and compares three spreading matrices. The matrices include the Hadamard, Rotated Hadamard and Mutually Orthogonal Complementary Sets of Sequences (MOCSS). The study is carried out for block lengths of M = 2, M = 4 and M = 8 and it shows that all the spreading matrices show improvement and a better performance over the conventional OFDM over frequency selective channel as expected. As the size ofM increased the spreading matrices which have better orthogonal qualities show greater improvemen

    Noncommutative Dipole Field Theories And Unitarity

    Full text link
    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.Comment: typos corrected, more details added in Sec 5, version to appear in JHE

    Searching for Exoplanets Using a Microresonator Astrocomb

    Get PDF
    Detection of weak radial velocity shifts of host stars induced by orbiting planets is an important technique for discovering and characterizing planets beyond our solar system. Optical frequency combs enable calibration of stellar radial velocity shifts at levels required for detection of Earth analogs. A new chip-based device, the Kerr soliton microcomb, has properties ideal for ubiquitous application outside the lab and even in future space-borne instruments. Moreover, microcomb spectra are ideally suited for astronomical spectrograph calibration and eliminate filtering steps required by conventional mode-locked-laser frequency combs. Here, for the calibration of astronomical spectrographs, we demonstrate an atomic/molecular line-referenced, near-infrared soliton microcomb. Efforts to search for the known exoplanet HD 187123b were conducted at the Keck-II telescope as a first in-the-field demonstration of microcombs

    Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb

    Get PDF
    We report, for the first time to the best of our knowledge, spectral phase characterization and line-by-line pulse shaping of an optical frequency comb generated by nonlinear wave mixing in a microring resonator. Through programmable pulse shaping the comb is compressed into a train of near-transform-limited pulses of \approx 300 fs duration (intensity full width half maximum) at 595 GHz repetition rate. An additional, simple example of optical arbitrary waveform generation is presented. The ability to characterize and then stably compress the frequency comb provides new data on the stability of the spectral phase and suggests that random relative frequency shifts due to uncorrelated variations of frequency dependent phase are at or below the 100 microHertz level.Comment: 18 pages, 4 figure

    Influence of genomic variation in FTO at 16q12.2, MC4R at 18q22 and NRXN3 at 14q31 genes on breast cancer risk

    Get PDF
    Breast cancer is a major cause of cancer-related deaths in women. It is known that obesity is one of the risk factors of breast cancer. The subject of our interest was genes: FTO, MC4R and NRXN3–associated with obesity. In this study we have analyzed frequencies of genomic variants in FTO, MC4R and NRXN3 in the group of 134 breast cancer patients. We genotyped two polymorphic sites located in FTO gene (rs993909 and rs9930506), one polymorphic site of MC4R gene (rs17782313) and one polymorphic site of NRXN3 gene (rs10146997). Our hypothesis was that above mentioned SNPs could participate in carcinogenesis. Our research has showed that only rs10146997 was significantly (P = 0.0445) associated with higher risk of breast cancer development (OR = 0.66 (95% CI 0.44–0.99)). Moreover, G allele carriers in rs10146997 of the NRXN3 gene were the youngest patients at onset of breast cancer. On the basis of our research we suggest that further functional may elucidate the role of genomic variation in breast cancer development

    Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant

    Full text link
    We show that the ABJM theory, which is an N=6 superconformal U(N)*U(N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS_4/CFT_3 duality at the quantum level. Here we calculate the free energy, and confirm the N^{3/2} scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes. Furthermore, we show that some results obtained by the Fermi gas approach can be clearly understood from the constant map contribution obtained by the genus expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.Comment: 35 pages, 20 figures; reference added. The simulation code is available upon request to [email protected]

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
    corecore