33 research outputs found
Riemann-Hilbert problems for poly-Hardy space on the unit ball
In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP)
with a constant coefficients for the poly-Hardy space on the real unit ball in
higher dimensions. We first discuss the boundary behaviour of functions in the
poly-Hardy class. Then we construct the Schwarz kernel and the higher order
Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly-
Hardy class. Finally, we obtain explicit integral expressions for their solutions.
As a special case, monogenic signals as elements in the Hardy space over the
unit sphere will be reconstructed in the case of boundary data given in terms
of functions having values in a Clifford subalgebra. Such monogenic signals
represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane
Boundary Value Problem for Matrix Analogue of Helmholtz’s Equation (Poincaré’s Problem)
En este artĂculo se estudia un sistema de ecuaciones en derivadas parciales elĂpticas en el espacio complejo, considerado como un análogo matricial de la ecuaciĂłn de Helmholtz. Se investiga cĂłmo reducir el problema de PoincarĂ© asociado a este sistema a un sistema integral singular equivalente, bajo ciertas condiciones en la frontera y en el infinito